Combinatorial Convexity - Barany, Imre; - Prospero Internetes Könyváruház

Combinatorial Convexity
 
A termék adatai:

ISBN13:9781470467098
ISBN10:1470467097
Kötéstípus:Puhakötés
Terjedelem:148 oldal
Méret:257x181x19 mm
Súly:304 g
Nyelv:angol
716
Témakör:

Combinatorial Convexity

 
Kiadó: MP?AMM American Mathematical
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 48.95
Becsült forint ár:
25 698 Ft (24 475 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

23 129 (22 028 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 570 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Explores the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research.

Hosszú leírás:
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Caratheodory, and the $(p, q)$ theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.

The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.