ISBN13: | 9781032494449 |
ISBN10: | 1032494441 |
Kötéstípus: | Keménykötés |
Terjedelem: | 504 oldal |
Méret: | 254x178 mm |
Súly: | 453 g |
Nyelv: | angol |
Illusztrációk: | 11 Illustrations, black & white; 11 Line drawings, black & white |
700 |
A matematika alapjai, matematikai logika
Számelmélet
Algebra
Geometria és topológia
Kombinatorika és gráfelmélet
A számítástudomány elmélete, a számítástechnika általában
Adatvédelem, adatbiztonság
A számítógép és az információs technológia hatása a társadalomra
Diszkrét matematika
A matematika alapjai, matematikai logika (karitatív célú kampány)
Számelmélet (karitatív célú kampány)
Algebra (karitatív célú kampány)
Geometria és topológia (karitatív célú kampány)
Kombinatorika és gráfelmélet (karitatív célú kampány)
A számítástudomány elmélete, a számítástechnika általában (karitatív célú kampány)
Adatvédelem, adatbiztonság (karitatív célú kampány)
A számítógép és az információs technológia hatása a társadalomra (karitatív célú kampány)
Diszkrét matematika (karitatív célú kampány)
Completely Regular Codes in Distance Regular Graphs
GBP 155.00
Kattintson ide a feliratkozáshoz
This book provides, for the first time, a definitive source for the main theoretical notions underpinning this fascinating area of study. It also supplies several useful surveys of constructions using Coding Theory, Design Theory and Finite Geometry in the various families of distance regular graphs of large diameters.
The concept of completely regular code was introduced by Delsarte in his celebrated 1973 thesis which created the field of Algebraic Combinatorics. This notion was extended by several authors from classical codes over finite fields to codes in distance-regular graphs. Half a century later, there was no book dedicated uniquely to this notion. Most of Delsarte examples were in the Hamming and Johnson graph. In recent years many examples were constructed in other distance regular graphs including q-analogues of the previous, and the Doob graph.
Completely Regular Codes in Distance Regular Graphs provides, for the first time, a definitive source for the main theoretical notions underpinning this fascinating area of study. It also supplies several useful surveys of constructions using Coding Theory, Design Theory and Finite Geometry in the various families of distance regular graphs of large diameters.
Features
- Written by pioneering experts in the domain
- Suitable as a as a research reference at the master?s level
- Includes extensive tables of completely regular codes in the Hamming graph
- Features a collection of up-to-date surveys.
1. Completely regular codes and equitable partitions. 2. Completely regular codes over finite fields. 3. Completely regular codes in the Johnson graph. 4. Codes over rings and modules. 5. Group actions on codes in graphs. 6. Some completely regular codes in Doob graphs. 7. Completely regular codes: tables of small parameters for binary and ternary Hamming graphs.