• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Computational Intelligence for Genomics Data

    Computational Intelligence for Genomics Data by Pandey, Babita; Balas, Valentina Emilia; Tripathi, Suman Lata;

    Sorozatcím: Advances in Biomedical Informatics;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 167.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        71 261 Ft (67 867 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 7 126 Ft off)
      • Discounted price 64 134 Ft (61 080 Ft + 5% áfa)

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Academic Press
    • Megjelenés dátuma 2025. január 22.

    • ISBN 9780443300806
    • Kötéstípus Puhakötés
    • Terjedelem328 oldal
    • Méret 276x215 mm
    • Súly 450 g
    • Nyelv angol
    • 681

    Kategóriák

    Hosszú leírás:

    Computational Intelligence for Genomics Data presents an overview of machine learning and deep learning techniques being developed for the analysis of genomic data and the development of disease prediction models. The book focuses on machine and deep learning techniques applied to dimensionality reduction, feature extraction, and expressive gene selection. It includes designs, algorithms, and simulations on MATLAB and Python for larger prediction models and explores the possibilities of software and hardware-based applications and devices for genomic disease prediction. With the inclusion of important case studies and examples, this book will be a helpful resource for researchers, graduate students, and professional engineers.

    Több

    Tartalomjegyzék:

    Section 1: Introduction to biological data and analysis
    1.1 Genomic data
    1.2 Microarray analysis
    1.3 Hub gene selection
    1.4 Pathogenesis
    1.5 Expressive gene
    1.6 Gene reduction
    1.7 Biomarkers

    Section 2: Traditional Machine learning models for gene selection and classification
    2.1 Gene selection and liver disease classification using machine learning
    2.2 Gene selection and Diabetic kidney disease classification using machine learning
    2.3. Gene selection and neurodegenerative disease classification using machine learning
    2.4. Gene selection and neuromuscular disorder classification using machine learning
    2.5. Gene selection and cancer classification using machine learning
    2.6. Gene selection and disease classification using machine learning

    Section3: Deep learning models for gene selection and classification
    3.1 Gene selection and liver disease classification using deep learning
    3.2 Gene selection and Diabetic kidney disease classification using machine learning
    3.3. Gene selection and neurodegenerative disease classification using deep learning
    3.4. Gene selection and neuromuscular disorder classification using deep learning
    3.5. Gene selection and cancer classification using deep learning
    3.6. Gene selection and disease classification using deep learning

    Section 4: Gene selection and classification using Artificial intelligence-based optimization methods
    4.1 Gene selection and liver disease classification using Particle warm optimization, genetic algorithm, principal component analysis, wolf optimization, ant colony optimization etc.
    4.2 Gene selection and Diabetic kidney disease classification using Particle warm optimization, genetic algorithm, principal component analysis, wolf optimization, ant colony optimization etc.
    4.3. Gene selection and neurodegenerative disease classification using Particle warm optimization, genetic algorithm, principal component analysis, wolf optimization, ant colony optimization etc.
    4.4. Gene selection and neuromuscular disorder classification using Particle warm optimization, genetic algorithm, principal component analysis, wolf optimization, ant colony optimization etc.
    4.5 Gene selection and cancer classification using Particle warm optimization, genetic algorithm, principal component analysis, wolf optimization, ant colony optimization etc.

    Section 5: Explainable AI for computational biology
    5.1. Use of LIME for diagnosis of disease
    5.2. Use of Shape for diagnosis of disease
    5.3. Quantitative graph theory for integrated omics data

    Section 6: Applications of computational biology in healthcare
    6.1 Diagnosis of liver disorder
    6.2 Diagnosis of diabetic kidney disease
    6.3 Diagnosis of cancer
    6.4 Diagnosis of neurodegenerative disorder.
    6.5 Diagnosis of neuromuscular disorder
    6.6. Diagnosis of any other health disorder

    Több