Computer Vision Beyond the Visible Spectrum - Bhanu, Bir; Pavlidis, Ioannis; (szerk.) - Prospero Internetes Könyváruház

Computer Vision Beyond the Visible Spectrum

 
Kiadás sorszáma: Softcover reprint of hardcover 1st ed. 2005
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Previously published in hardcover
 
Normál ár:

Kiadói listaár:
EUR 160.49
Becsült forint ár:
68 079 Ft (64 837 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

62 633 (59 650 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 5 446 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Hosszú leírás:
Recently, there has been a dramatic increase in the use of sensors in the non-visible bands. As a result, there is a need for existing computer vision methods and algorithms to be adapted for use with non-visible sensors, or for the development of completely new methods and systems. Computer Vision Beyond the Visible Spectrum is the first book to bring together state-of-the-art work in this area. It presents new & pioneering research across the electromagnetic spectrum in the military, commercial, and medical domains. By providing a detailed examination of each of these areas, it focuses on the development of state-of-the-art algorithms and looks at how they can be used to solve existing & new challenges within computer vision. Essential reading for academics & industrial researchers working in the area of computer vision, image processing, and medical imaging, it will also be useful background reading for advanced undergraduate & postgraduate students.
Tartalomjegyzék:
A Theoretical Framework for Predicting Performance of Object Recognition.- Methods for Improving the Performance of an SAR Recognition System.- Three-Dimensional Laser Radar Recognition Approaches.- Target Classification Using Adaptive Feature Extraction and Subspace Projection for Hyperspectral Imagery.- Moving Object Detection and Compression in IR Sequences.- Face Recognition in the Thermal Infrared.- Cardiovascular MR Image Analysis.- Visualization and Segmentation Techniques in 3D Ultrasound Images.- Time-Frequency Analysis in Terahertz-Pulsed Imaging.