Concept Drift in Large Language Models - Desale, Ketan Sanjay; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9781032978079
ISBN10:1032978074
Kötéstípus:Keménykötés
Terjedelem:104 oldal
Méret:234x156 mm
Nyelv:angol
Illusztrációk: 9 Illustrations, black & white; 9 Line drawings, black & white; 8 Tables, black & white
700
Témakör:

Concept Drift in Large Language Models

Adapting the Conversation
 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 79.99
Becsült forint ár:
40 482 Ft (38 555 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

36 434 (34 700 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 4 048 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book explores the application of the complex relationship between concept drift and cutting-edge large language models to address the problems and opportunities in navigating changing data landscapes. 

Hosszú leírás:

This book explores the application of the complex relationship between concept drift and cutting-edge large language models to address the problems and opportunities in navigating changing data landscapes. It discusses the theoretical basis of concept drift and its consequences for large language models, particularly the transformative power of cutting-edge models such as GPT-3.5 and GPT-4. It offers real-world case studies to observe firsthand how concept drift influences the performance of language models in a variety of circumstances, delivering valuable lessons learnt and actionable takeaways. The book is designed for professionals, AI practitioners, and scholars, focused on natural language processing, machine learning, and artificial intelligence.



  • Examines concept drift in AI, particularly its impact on large language models

  • Analyses how concept drift affects large language models and its theoretical and practical consequences

  • Covers detection methods and practical implementation challenges in language models

  • Showcases examples of concept drift in GPT models and lessons learnt from their performance

  • Identifies future research avenues and recommendations for practitioners tackling concept drift in large language models
Tartalomjegyzék:

1. Introduction 2. Concept Drift Fundamentals 3. Large Language Models 4. Concept Drift and Large Language Models 5. Detecting Concept Drift in Language Models 6. Adapting Language Models 7. Natural Language Processing 8. Limitations and Challenges 9. Conclusion and Future Directions