Two-dimensional Two-product Cubic Systems, Vol I - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Two-dimensional Two-product Cubic Systems, Vol I

Different Product Structure Vector Fields
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 181.89
Becsült forint ár:
77 539 Ft (73 847 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

62 031 (59 078 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 15 508 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.

? Two-different product-cubic systems

? Hybrid networks of higher-order equilibriums and flows

? Hybrid series of simple equilibriums and hyperbolic flows

? Higher-singular equilibrium appearing bifurcations

? Higher-order singular flow appearing bifurcations

? Parabola-source (sink) infinite-equilibriums

? Parabola-saddle infinite-equilibriums

? Inflection-saddle infinite-equilibriums

? Inflection-source (sink) infinite-equilibriums

? Infinite-equilibrium switching bifurcations.

  • Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems;
  • Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems;
  • Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles.


Hosszú leírás:

This book is the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.



? Two-different product-cubic systems



? Hybrid networks of higher-order equilibriums and flows



? Hybrid series of simple equilibriums and hyperbolic flows



? Higher-singular equilibrium appearing bifurcations



? Higher-order singular flow appearing bifurcations



? Parabola-source (sink) infinite-equilibriums



? Parabola-saddle infinite-equilibriums



? Inflection-saddle infinite-equilibriums



? Inflection-source (sink) infinite-equilibriums



? Infinite-equilibrium switching bifurcations.



 

Tartalomjegyzék:

Chapter 1 Cubic Systems with Two different Product Structures.- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity.-  Chapter 3 Inflection-source (sink) flows and parabola-saddles.- Chapter 4Saddle-source (sink) with hyperbolic flow singularity.- Chapter 5 Equilibrium matrices with hyperbolic flows.