ISBN13: | 9783031484865 |
ISBN10: | 303148486X |
Kötéstípus: | Keménykötés |
Terjedelem: | 336 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white; 54 Illustrations, color |
700 |
Matematika a mérnöki- és természettudományok területén
Taxonómia, rendszertan
A mérnöki tudományok általános kérdései
További könyvek a számítástechnika területén
Matematika a mérnöki- és természettudományok területén (karitatív célú kampány)
Taxonómia, rendszertan (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
További könyvek a számítástechnika területén (karitatív célú kampány)
Two-dimensional Two-product Cubic Systems, Vol I
EUR 181.89
Kattintson ide a feliratkozáshoz
This book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.
? Two-different product-cubic systems
? Hybrid networks of higher-order equilibriums and flows
? Hybrid series of simple equilibriums and hyperbolic flows
? Higher-singular equilibrium appearing bifurcations
? Higher-order singular flow appearing bifurcations
? Parabola-source (sink) infinite-equilibriums
? Parabola-saddle infinite-equilibriums
? Inflection-saddle infinite-equilibriums
? Inflection-source (sink) infinite-equilibriums
? Infinite-equilibrium switching bifurcations.
- Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems;
- Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems;
- Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles.
This book is the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques.
? Two-different product-cubic systems
? Hybrid networks of higher-order equilibriums and flows
? Hybrid series of simple equilibriums and hyperbolic flows
? Higher-singular equilibrium appearing bifurcations
? Higher-order singular flow appearing bifurcations
? Parabola-source (sink) infinite-equilibriums
? Parabola-saddle infinite-equilibriums
? Inflection-saddle infinite-equilibriums
? Inflection-source (sink) infinite-equilibriums
? Infinite-equilibrium switching bifurcations.
Chapter 1 Cubic Systems with Two different Product Structures.- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity.- Chapter 3 Inflection-source (sink) flows and parabola-saddles.- Chapter 4Saddle-source (sink) with hyperbolic flow singularity.- Chapter 5 Equilibrium matrices with hyperbolic flows.