ISBN13: | 9783031571039 |
ISBN10: | 3031571037 |
Kötéstípus: | Keménykötés |
Terjedelem: | 256 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white; 41 Illustrations, color |
700 |
Matematika a mérnöki- és természettudományok területén
Taxonómia, rendszertan
A mérnöki tudományok általános kérdései
További könyvek a számítástechnika területén
Matematika a mérnöki- és természettudományok területén (karitatív célú kampány)
Taxonómia, rendszertan (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
További könyvek a számítástechnika területén (karitatív célú kampány)
Two-dimensional Product-Cubic Systems, Vol. IV
EUR 171.19
Kattintson ide a feliratkozáshoz
This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include:
- Parabola-source (sink) infinite-equilibriums,
- Inflection-source (sink) infinite-equilibriums,
- Hyperbolic (circular) sink-to source infinite-equilibriums,
- Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums.
- Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field;
- Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums;
- Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles.
This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include:
- Parabola-source (sink) infinite-equilibriums,
- Inflection-source (sink) infinite-equilibriums,
- Hyperbolic (circular) sink-to source infinite-equilibriums,
- Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums.
Preface .- Crossing-quadratic and product-cubic systems.- Double-inflection-saddles and bifurcation dynamics.- Parabola-saddles and bifurcation.