ISBN13: | 9781041006404 |
ISBN10: | 1041006403 |
Kötéstípus: | Keménykötés |
Terjedelem: | 104 oldal |
Méret: | 216x138 mm |
Nyelv: | angol |
Illusztrációk: | 23 Illustrations, black & white; 1 Halftones, black & white; 22 Line drawings, black & white; 5 Tables, black & white |
700 |
Villamosmérnöki tudományok, híradástechnika, műszeripar
Gépészmérnöki tudományok
Közlekedésmérnöki tudományok, járműipar, szállítási ipar
Számítógép architektúrák, logikai tervezés
Szuperszámítógépek
Számítógépes hálózatok általában
Adatbázis kezelő szoftverek
Mesterséges intelligencia
Számítógépes bűnözés
A számítástechnika biztonsági és egészségügyi vonatkozásai
Az internetről általában
Villamosmérnöki tudományok, híradástechnika, műszeripar (karitatív célú kampány)
Gépészmérnöki tudományok (karitatív célú kampány)
Közlekedésmérnöki tudományok, járműipar, szállítási ipar (karitatív célú kampány)
Számítógép architektúrák, logikai tervezés (karitatív célú kampány)
Szuperszámítógépek (karitatív célú kampány)
Számítógépes hálózatok általában (karitatív célú kampány)
Adatbázis kezelő szoftverek (karitatív célú kampány)
Mesterséges intelligencia (karitatív célú kampány)
Számítógépes bűnözés (karitatív célú kampány)
A számítástechnika biztonsági és egészségügyi vonatkozásai (karitatív célú kampány)
Az internetről általában (karitatív célú kampány)
Cybersecurity in Robotic Autonomous Vehicles
GBP 49.99
Kattintson ide a feliratkozáshoz
Cybersecurity in Robotic Autonomous Vehicles introduces a novel Intrusion Detection System (IDS) specifically designed for AVs, which leverages data prioritization in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.
Cybersecurity in Robotic Autonomous Vehicles introduces a novel Intrusion Detection System (IDS) specifically designed for AVs, which leverages data prioritization in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.
Presenting a new method for improving vehicle security, the book demonstrates how the IDS have incorporated machine learning and deep learning frameworks to analyze CAN Bus traffic and identify the presence of any malicious activities in real time with high level of accuracy. It provides a comprehensive examination of the cybersecurity risks faced by AVs with a particular emphasis on CAN vulnerabilities and the innovative use of data prioritization within CAN IDs.
The book will interest researchers and advanced undergraduate students taking courses in cybersecurity, automotive engineering, and data science. Automotive industry and robotics professionals focusing on internet-of-vehicles and cybersecurity will also benefit from the contents.
1. Introduction. 2. Theoretical Lens. 3. Exploring CAN Bus Security: Insights and Analysis. 4. Research Design. 5. Results and Discussion. 6. Conclusions and Future Research.