Cybersecurity in Robotic Autonomous Vehicles - Alruwaili, Ahmed; Islam, Sardar M. N.; Gondal, Iqbal; - Prospero Internetes Könyváruház

Cybersecurity in Robotic Autonomous Vehicles: Machine Learning Applications to Detect Cyber Attacks
 
A termék adatai:

ISBN13:9781041006404
ISBN10:1041006403
Kötéstípus:Keménykötés
Terjedelem:104 oldal
Méret:216x138 mm
Nyelv:angol
Illusztrációk: 23 Illustrations, black & white; 1 Halftones, black & white; 22 Line drawings, black & white; 5 Tables, black & white
700
Témakör:

Cybersecurity in Robotic Autonomous Vehicles

Machine Learning Applications to Detect Cyber Attacks
 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 52.99
Becsült forint ár:
27 819 Ft (26 495 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

25 038 (23 846 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 782 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

Cybersecurity in Robotic Autonomous Vehicles introduces a novel Intrusion Detection System (IDS) specifically designed for AVs, which leverages data prioritization in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.

Hosszú leírás:

Cybersecurity in Robotic Autonomous Vehicles introduces a novel Intrusion Detection System (IDS) specifically designed for AVs, which leverages data prioritization in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.


Presenting a new method for improving vehicle security, the book demonstrates how the IDS have incorporated machine learning and deep learning frameworks to analyze CAN Bus traffic and identify the presence of any malicious activities in real time with high level of accuracy. It provides a comprehensive examination of the cybersecurity risks faced by AVs with a particular emphasis on CAN vulnerabilities and the innovative use of data prioritization within CAN IDs.


The book will interest researchers and advanced undergraduate students taking courses in cybersecurity, automotive engineering, and data science. Automotive industry and robotics professionals focusing on internet-of-vehicles and cybersecurity will also benefit from the contents.

Tartalomjegyzék:

1. Introduction.  2. Theoretical Lens.  3. Exploring CAN Bus Security: Insights and Analysis.  4. Research Design.  5. Results and Discussion.  6. Conclusions and Future Research.