Cybersecurity in Robotic Autonomous Vehicles - Alruwaili, Ahmed; Islam, Sardar M. N.; Gondal, Iqbal; - Prospero Internetes Könyváruház

Cybersecurity in Robotic Autonomous Vehicles: Machine Learning Applications to Detect Cyber Attacks
 
A termék adatai:

ISBN13:9781041006404
ISBN10:1041006403
Kötéstípus:Keménykötés
Terjedelem:106 oldal
Méret:216x138 mm
Súly:360 g
Nyelv:angol
Illusztrációk: 23 Illustrations, black & white; 1 Halftones, black & white; 22 Line drawings, black & white; 5 Tables, black & white
0
Témakör:

Cybersecurity in Robotic Autonomous Vehicles

Machine Learning Applications to Detect Cyber Attacks
 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 52.99
Becsült forint ár:
26 818 Ft (25 541 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

24 136 (22 987 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 682 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Cybersecurity in Robotic Autonomous Vehicles introduces a novel Intrusion Detection System (IDS) specifically designed for AVs, which leverages data prioritization in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.

Hosszú leírás:

Cybersecurity in Robotic Autonomous Vehicles introduces a novel intrusion detection system (IDS) specifically designed for AVs, which leverages data prioritisation in CAN IDs to enhance threat detection and mitigation. It offers a pioneering intrusion detection model for AVs that uses machine and deep learning algorithms.


Presenting a new method for improving vehicle security, the book demonstrates how the IDS has incorporated machine learning and deep learning frameworks to analyse CAN bus traffic and identify the presence of any malicious activities in real time with high level of accuracy. It provides a comprehensive examination of the cybersecurity risks faced by AVs with a particular emphasis on CAN vulnerabilities and the innovative use of data prioritisation within CAN IDs.


The book will interest researchers and advanced undergraduate students taking courses in cybersecurity, automotive engineering, and data science. Automotive industry and robotics professionals focusing on Internet of Vehicles and cybersecurity will also benefit from the contents.

Tartalomjegyzék:

1. Introduction.  2. Theoretical Lens.  3. Exploring CAN Bus Security: Insights and Analysis.  4. Research Design.  5. Results and Discussion.  6. Conclusions and Future Research.