Data Engineering and Applications - Agrawal, Jitendra; Shukla, Rajesh K.; Sharma, Sanjeev;(szerk.) - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9789819724505
ISBN10:9819724503
Kötéstípus:Keménykötés
Terjedelem:471 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 35 Illustrations, black & white; 152 Illustrations, color
666
Témakör:

Data Engineering and Applications

Proceedings of the International Conference, IDEA 2K22, Volume 2
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 267.49
Becsült forint ár:
116 277 Ft (110 740 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

106 975 (101 881 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 9 302 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book comprises select proceedings from the 4th International Conference on Data, Engineering, and Applications (IDEA 2022). The contents discuss novel contributions and latest developments in the domains of data structures and data management algorithms, information retrieval and information integration, social data analytics, IoT and data intelligence, Industry 4.0 and digital manufacturing, data fusion, natural language processing, geolocation handling, image, video and signal processing, ICT applications and e-governance, among others. This book is of interest to researchers in academia and industry working in big data, data mining, machine learning, data science, and their associated learning systems and applications.

Hosszú leírás:
This book comprises select proceedings from the 4th International Conference on Data, Engineering, and Applications (IDEA 2022). The contents discuss novel contributions and latest developments in the domains of data structures and data management algorithms, information retrieval and information integration, social data analytics, IoT and data intelligence, Industry 4.0 and digital manufacturing, data fusion, natural language processing, geolocation handling, image, video and signal processing, ICT applications and e-governance, among others. This book is of interest to researchers in academia and industry working in big data, data mining, machine learning, data science, and their associated learning systems and applications.
Tartalomjegyzék:
Review of Methods for Handling Class-Imbalanced in Classification Problems.- Course Material Recommendation System Using Student Learning Behavior and Course Material Complexity Score for Slow Learner Students.- A Benchmarking Investigation of Evolutionary Algorithms to resolve the COVID Sample Collection Problem.- Using OpenNLP and GraalVM to detect sentences in Kubernetes while comparing Helidon and Spring Boot's metrics.- An Efficient Hybrid Model to Summarize the Text using Transfer Learning.- Automatic Detection of Learner's Learning Style.- Construction of an Intelligent Knowledge based System using Transformer Model.- Machine Learning-Based Disease Diagnosis using Body Signals: A Review.- Finite-Difference and Finite-Volume 1D Steady-State Heat Conduction model for Machine Learning Algorithms.- Sign Language Detection Through PCANet and SVM.-  A Novel Surface Roughness Estimation and Optimization Model for Turning Process Using RSM-JAYA Method.-  Effective Prediction of Coronary Heart Disease Using Hybrid Machine Learning.- Feature Extraction Using Levy Distribution-Based Salp Swarm Algorithm.- Plant Disease Detection using Machine Learning Approaches: A Review.- Copy Move Forgery Detection Algorithm: A Machine Learning based approach to detect Image Forgery.- A Machine Learning based Approach to Combat Hate Speech on Social Media.- Prediction of SARS ? COVID ? 19 Based on Transfer Machine Learning Techniques using Lungs CT Scan Images.- Online Document Identification and Verification using Machine Learning Model.