A termék adatai:
ISBN13: | 9781009098489 |
ISBN10: | 1009098489 |
Kötéstípus: | Keménykötés |
Terjedelem: | 614 oldal |
Méret: | 259x183x31 mm |
Súly: | 1360 g |
Nyelv: | angol |
2451 |
Témakör:
Analízis
Valószínűségelmélet és matematikai statisztika
Optimalizáció, lineáris programozás, játékelmélet
Alkalmazott matematika
Villamosmérnöki tudományok, híradástechnika, műszeripar
A számítástudomány elmélete, a számítástechnika általában
Operációs rendszerek és grafikus felhasználói felületek
Mesterséges intelligencia
Digitális jel-, hang- és képfeldolgozás
További könyvek a fizika területén
Data-Driven Science and Engineering
Machine Learning, Dynamical Systems, and Control
Kiadás sorszáma: 2
Kiadó: Cambridge University Press
Megjelenés dátuma: 2022. május 5.
Normál ár:
Kiadói listaár:
GBP 49.99
GBP 49.99
Az Ön ára:
23 006 (21 911 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 556 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB&&&174;.
Hosszú leírás:
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB&&&174;, this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB&&&174;, Python, Julia, and R - available on databookuw.com.
'Finally, a book that introduces data science in a context that will make any mechanical engineer feel comfortable. Data science is the new calculus, and no engineer should graduate without a thorough understanding of the topic.' Hod Lipson, Columbia University
'Finally, a book that introduces data science in a context that will make any mechanical engineer feel comfortable. Data science is the new calculus, and no engineer should graduate without a thorough understanding of the topic.' Hod Lipson, Columbia University
Tartalomjegyzék:
Part I. Dimensionality Reduction and Transforms: 1. Singular Value Decomposition; 2. Fourier and Wavelet Transforms; 3. Sparsity and Compressed Sensing; Part II. Machine Learning and Data Analysis: 4. Regression and Model Selection; 5. Clustering and Classification; 6. Neural Networks and Deep Learning; Part III. Dynamics and Control: 7. Data-Driven Dynamical Systems; 8. Linear Control Theory; 9. Balanced Models for Control; Part IV. Advanced Data-Driven Modeling and Control: 10. Data-Driven Control; 11. Reinforcement Learning; 12. Reduced Order Models (ROMs); 13. Interpolation for Parametric ROMs; 14. Physics-Informed Machine Learning.