Earth Observation Applications to Landslide Mapping, Monitoring and Modeling - Sandric, Ionut; Ilinca, Viorel; Chitu, Zenaida; (szerk.) - Prospero Internetes Könyváruház

Earth Observation Applications to Landslide Mapping, Monitoring and Modeling: Cutting-edge Approaches with Artificial Intelligence, Aerial and Satellite Imagery
 
A termék adatai:

ISBN13:9780128238684
ISBN10:0128238682
Kötéstípus:Puhakötés
Terjedelem:400 oldal
Méret:234x190 mm
Súly:1000 g
Nyelv:angol
Illusztrációk: 200 illustrations (120 in full color)
694
Témakör:

Earth Observation Applications to Landslide Mapping, Monitoring and Modeling

Cutting-edge Approaches with Artificial Intelligence, Aerial and Satellite Imagery
 
Sorozatcím: Earth Observation;
Kiadó: Elsevier
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 143.00
Becsült forint ár:
62 162 Ft (59 202 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

49 730 (47 362 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 12 432 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Nem tudnak pontosabbat?
 
  példányt

 
Hosszú leírás:
Earth Observation Applications to Landslide Mapping, Monitoring and Modeling: Cutting-edge Approacheswith Artificial Intelligence, Aerial and Satellite Imagery focuses on the application of drone and satellite imagery for landslide mapping, monitoring, and modeling. The topics covered include the use of ultrahigh spatial resolution imagery acquired by UAVs (Unmanned Aerial Vehicles) for mapping and predicting landslide activity, the use of satellite imagery for monitoring landslide activity, the assimilation of EO (EarthObservation) data into landslide susceptibility and hazard prediction models, and the building of landslide inventories. The primary objective of this book is the advancement of the scientific understanding and application of technologies to address a variety of areas related to landslide mapping and monitoring for robust and sustainable development. Earth Observation Applications to Landslide Mapping, Monitoring and Modeling be useful for PhD students, postdoctoral researchers, professors, and scientists in geoscience.
Tartalomjegyzék:
Section 1: Introduction

1. A review of UAV-based data applications for landslide mapping and monitoring
2. A review of the state-of-the-art use of satellite Earth observation data for landslide mapping and monitoring

Section 2: Satellite data in landslide mapping and
monitoring

3. On the use of the EGMS data for studying landslides in Great Britain
4. Deciphering the kinematics of urban landslides through SAR imagery analysis
5. Artificial intelligence applications for landslide mapping/monitoring on satellite EO data
6. Mapping landslides on Earth, Moon, and Mars using satellite imagery and deep learning techniques

Section 3: Drone applications for landslide mapping
and monitoring

7. Landslide volume and runoff monitoring using UAV photogrammetry
8. Landslide 3D reconstruction and monitoring using oblique and nadiral drone aerial imagery
9. Geomorphic monitoring and assessment of debris flows using drone-based structure from motion
10. Machine learning and object-based image analysis for landside mapping using UAV-derived data
11. Estimating kinematic uncertainties of landslides using UAV time series
12. Detailed landslide kinematics mapping using short-term UAV time-series. Case study: Livadea landslide, Romania

Section 4: EO data assimilations in landslide susceptibility, hazard mapping and risk assessment

13. Building landslide inventory with LiDAR data and deep learning
14 Landslide susceptibility mapping using machine-learning algorithms and earth observation data
15. Microwave remote sensing for investigating hydrological preconditions triggering landslides: a case study: Ialomita Subcarpathians, Romania
16. Use of UAV imagery for the detection and measurement of damages to road networks in landslide areas

Section 5: Future challenges and future outlook

17. Mapping the existing challenges and pathway forward