Ethical Data Science - Washington, Anne L.; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9780197693025
ISBN10:0197693024
Kötéstípus:Keménykötés
Terjedelem:184 oldal
Méret:221x160x30 mm
Súly:408 g
Nyelv:angol
708
Témakör:

Ethical Data Science

Prediction in the Public Interest
 
Kiadó: OUP USA
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 25.99
Becsült forint ár:
13 644 Ft (12 995 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

12 280 (11 696 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 1 364 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Amidst a growing movement to use science for positive change, Ethical Data Science offers a solution-oriented approach to the ethical challenges of data science. As one of the first books on public interest technology, it provides a starting point for anyone who wants human values to counterbalance the institutional incentives that drive computational prediction.

Hosszú leírás:
Can data science truly serve the public interest? Data-driven analysis shapes many interpersonal, consumer, and cultural experiences yet scientific solutions to social problems routinely stumble. All too often, predictions remain solely a technocratic instrument that sets financial interests against service to humanity. Amidst a growing movement to use science for positive change, Anne L. Washington offers a solution-oriented approach to the ethical challenges of data science.

Ethical Data Science empowers those striving to create predictive data technologies that benefit more people. As one of the first books on public interest technology, it provides a starting point for anyone who wants human values to counterbalance the institutional incentives that drive computational prediction. It argues that data science prediction embeds administrative preferences that often ignore the disenfranchised. The book introduces the prediction supply chain to highlight moral questions alongside the interlocking legal and commercial interests influencing data science. Structured around a typical data science workflow, the book systematically outlines the potential for more nuanced approaches to transforming data into meaningful patterns. Drawing on arts and humanities methods, it encourages readers to think critically about the full human potential of data science step-by-step. Situating data science within multiple layers of effort exposes dependencies while also pinpointing opportunities for research ethics and policy interventions.

This approachable process lays the foundation for broader conversations with a wide range of audiences. Practitioners, academics, students, policy makers, and legislators can all learn how to identify social dynamics in data trends, reflect on ethical questions, and deliberate over solutions. The book proves the limits of predictive technology controlled by the few and calls for more inclusive data science.

Legal practitioners who specialise in data protection law, or who have responsibility for data protection training within their organisation, may find that the real-world case studies, and detailed reference sections, alone justify the relatively modest financial outlay required.
Tartalomjegyzék:
Introduction: Ethical data science
Prologue: Tracking ethics in a prediction supply chain
1: SOURCE - Data are people too
2: MODEL - Dear validity: Advice for wayward algorithms
3: COMPARE - Category hacking
4: OPTIMIZE - Data science reasoning
5: LEARN - For good
6: Show us your work or someone gets hurt
7: Prediction in the public interest
References
Index