Fault diagnosis and prognostics based on cognitive computing and geometric space transformation - Lu, Chen; Tao, Laifa; Ma, Jian; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9789819989164
ISBN10:9819989167
Kötéstípus:Keménykötés
Terjedelem:590 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 76 Illustrations, black & white; 281 Illustrations, color
700
Témakör:

Fault diagnosis and prognostics based on cognitive computing and geometric space transformation

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 235.39
Becsült forint ár:
100 346 Ft (95 568 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

80 277 (76 454 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 20 069 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This monograph introduces readers to new theories and methods applying cognitive computing and geometric space transformation to the field of fault diagnosis and prognostics. It summarizes the basic concepts and technical aspects of fault diagnosis and prognostics technology. Existing bottleneck problems are examined, and the advantages of applying cognitive computing and geometric space transformation are explained. In turn, the book highlights fault diagnosis, prognostic, and health assessment technologies based on cognitive computing methods, including deep learning, transfer learning, visual cognition, and compressed sensing. Lastly, it covers technologies based on differential geometry, space transformation, and pattern recognition.

Hosszú leírás:

This monograph introduces readers to new theories and methods applying cognitive computing and geometric space transformation to the field of fault diagnosis and prognostics. It summarizes the basic concepts and technical aspects of fault diagnosis and prognostics technology. Existing bottleneck problems are examined, and the advantages of applying cognitive computing and geometric space transformation are explained. In turn, the book highlights fault diagnosis, prognostic, and health assessment technologies based on cognitive computing methods, including deep learning, transfer learning, visual cognition, and compressed sensing. Lastly, it covers technologies based on differential geometry, space transformation, and pattern recognition.

Tartalomjegyzék:

Chapter 1 Introduction.- Chapter 2 Fault Diagnosis and Prognosis based on Deep Learning and Transfer Learning.- Chapter 3 Fault Diagnosis and Evaluation Based on Visual Cognitive Computing.- Chapter 4 Fault Diagnosis Based on Compressed Sensing.- Chapter 5 Fault Diagnosis and Evaluation Based on Differential Geometry.- Chapter 6 Performance Degradation Prediction and Assessment based on Geometric Space Transformation and Morphology Recognition.