ISBN13: | 9781032788128 |
ISBN10: | 1032788127 |
Kötéstípus: | Keménykötés |
Terjedelem: | 274 oldal |
Méret: | 234x156 mm |
Súly: | 666 g |
Nyelv: | angol |
Illusztrációk: | 42 Illustrations, black & white; 42 Line drawings, black & white; 7 Tables, black & white |
699 |
Kombinatorika és gráfelmélet
Villamosmérnöki tudományok, híradástechnika, műszeripar
A számítástudomány elmélete, a számítástechnika általában
A számítástudomány matematikai elmélete
Számítógép architektúrák, logikai tervezés
Szuperszámítógépek
Operációs rendszerek és grafikus felhasználói felületek
Számítógépes programozás általában
Szoftverfejlesztés
Magasszintű programnyelvek
Számítógépes hálózatok általában
Mesterséges intelligencia
Környezetmérnöki tudományok
Az internetről általában
Diszkrét matematika
Kombinatorika és gráfelmélet (karitatív célú kampány)
Villamosmérnöki tudományok, híradástechnika, műszeripar (karitatív célú kampány)
A számítástudomány elmélete, a számítástechnika általában (karitatív célú kampány)
A számítástudomány matematikai elmélete (karitatív célú kampány)
Számítógép architektúrák, logikai tervezés (karitatív célú kampány)
Szuperszámítógépek (karitatív célú kampány)
Operációs rendszerek és grafikus felhasználói felületek (karitatív célú kampány)
Számítógépes programozás általában (karitatív célú kampány)
Szoftverfejlesztés (karitatív célú kampány)
Magasszintű programnyelvek (karitatív célú kampány)
Számítógépes hálózatok általában (karitatív célú kampány)
Mesterséges intelligencia (karitatív célú kampány)
Környezetmérnöki tudományok (karitatív célú kampány)
Az internetről általában (karitatív célú kampány)
Diszkrét matematika (karitatív célú kampány)
Federated Learning for Smart Communication using IoT Application
GBP 145.00
Kattintson ide a feliratkozáshoz
A Prosperónál jelenleg nincsen raktáron.
The book aims to demonstrate the effectiveness of federated learning in high-performance information systems and informatics-based solutions for addressing current information support requirements.
The effectiveness of federated learning in high?performance information systems and informatics?based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized federated learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT?based human activity recognition to show the efficacy of personalized federated learning for intelligent IoT applications.
Features:
- Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users? privacy
- Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy
- Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area
- Analyses the need for a personalized federated learning framework in cloud?edge and wireless?edge architecture for intelligent IoT applications
- Comprises real?life case illustrations and examples to help consolidate understanding of topics presented in each chapter
This book is recommended for anyone interested in federated learning?based intelligent algorithms for smart communications.
1. Introduction to Federated Learning: Transforming Collaborative Machine Learning for a Decentralized Future 2. Applications, Challenges, and Opportunities for Federated Learning in 6G 3. Unleash Federated Machine Learning and Internet of Medical Things (IoMT) for Diseases Screening and Enhancement of Smart Healthcare 4. Federated Machine Learning in Medical Science: A Perspective Investigation 5. Artificial Intelligence Techniques Based on Federated Learning in Smart Healthcare 6. Federated Machine Learning in Medical Science: A Prospective Investigation 7. Healthcare Informatics Security Issues and Solutions using Federated Learning 8. Innovative Solutions: Exploring Federated Learning-Based Resource Virtualization with AR Integration in Healthcare Environments 9. Securing the Connected World: Federated Learning and IoT Cybersecurity 10. Federated Learning Shaping the Future of Smart City Infrastructure 11. EmPowering Teaching Institutes: Integrating Federated Learning in the Internet of Things (IOT) 12. A Critical Role for Federated Learning in IoT