Fractional Order Systems and Applications in Engineering - Baleanu, Dumitru; Balas, Valentina Emilia; Agarwal, Praveen; (szerk.) - Prospero Internetes Könyváruház

Fractional Order Systems and Applications in Engineering
 
A termék adatai:

ISBN13:9780323909532
ISBN10:0323909531
Kötéstípus:Puhakötés
Terjedelem:390 oldal
Méret:234x190 mm
Súly:810 g
Nyelv:angol
473
Témakör:

Fractional Order Systems and Applications in Engineering

 
Kiadó: Academic Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 148.00
Becsült forint ár:
62 781 Ft (59 792 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

56 503 (53 813 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 278 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Nem tudnak pontosabbat?
 
  példányt

 
Hosszú leírás:
Fractional Order Systems and Applications in Engineering presents the use of fractional calculus (calculus of non-integer order) in the description and modelling of systems and in a range of control design and practical applications. The book covers the fundamentals of fractional calculus together with some analytical and numerical techniques, and provides MATLAB? codes for the simulation of fractional-order control (FOC) systems. The use of fractional calculus can improve and generalize well-established control methods and strategies. Many different FOC schemes are presented for control and dynamic systems problems. These extend to the challenging control engineering design problems of robust and nonlinear control. Practical material relating to a wide variety of applications including, among others, mechatronics, civil engineering, irrigation and water management, and biological systems is also provided. All the control schemes and applications are presented with either system simulation results or real experimental results, or both. Fractional Order Systems and Applications in Engineering introduces readers to the essentials of FOC and imbues them with a basic understanding of FOC concepts and methods. With this knowledge readers can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.
Tartalomjegyzék:

1. Complete synchronization of the time-fractional Chua reaction-diffusion system
2. New nonsymmetric and parametric divergences with particular cases
3. Analytical solutions of some fractional diffusion boundary value problems
4. An enhanced hybrid stochastic fractal search FOPID for speed control of DC motor
5. Fractional dynamics and metrics of deadly pandemic diseases
6. A numerical technique for solving fractional Benjamin-Bona-Mahony-Burgers equations with bibliometric analysis
7. Some roots and paths in the fractional calculus developing environment
8. Accruement of nonlinear dynamical system and its dynamics: electronics and cryptographic engineering
9. Some new integral inequalities via generalized proportional fractional integral operators for the classes of m-logarithmically convex functions
10. Application and optimization of a robust fractional-order FOPI-FOPID automatic generation controller for a multiarea interconnected hybrid power system
11. Fourth-order fractional diffusion equations: constructs and memory kernel effects
12. Analysis of COVID-19 outbreak using GIS and SEIR model
13. Hidden chaotic attractors in fractional-order discrete-time systems
14. Dynamical investigation and simulation of an incommensurate fractional-order model of COVID-19 outbreak with nonlinear saturated incidence rate
15. Weak Pontryagin's maximum principle for optimal control problems involving a general analytic kernel
16. Computational half-sweep preconditioned Gauss-Seidel method for time-fractional diffusion equations
17. Operational matrix approach for solving variable-order fractional integro-differential equations
18. On basic Humbert confluent hypergeometric functions
19. Derivatives of Horn's hypergeometric functions G1, G2, >1, and >2 with respect to their parameters