Fundamentals of Uncertainty Quantification for Engineers - Wang, Yan; Tran, Anh.V.; Mcdowell, David L.; - Prospero Internetes Könyváruház

Fundamentals of Uncertainty Quantification for  Engineers: Methods and Models
 
A termék adatai:

ISBN13:9780443136610
ISBN10:04431366111
Kötéstípus:Puhakötés
Terjedelem:600 oldal
Méret:228x152 mm
Súly:450 g
Nyelv:angol
700
Témakör:

Fundamentals of Uncertainty Quantification for Engineers

Methods and Models
 
Kiadó: Elsevier
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 195.00
Becsült forint ár:
82 719 Ft (78 780 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

74 447 (70 902 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 8 272 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:

Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples, implementation details, and practical exercises to reinforce the concepts outlined in the book. Sections start with a review of the history of probability theory and recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of probability axioms, conditional probability, and Bayes’ rule are discussed and examples of probability distributions in parametric data analysis, reliability, risk analysis, and materials informatics are included.

Random processes, sampling methods, and surrogate modeling techniques including multivariate polynomial regression, Gaussian process regression, multi-fidelity surrogate, support-vector machine, and decision tress are also covered. Methods for model selection, calibration, and validation are introduced next, followed by chapters on sensitivity analysis, stochastic expansion methods, Markov models, and non-probabilistic methods. The book concludes with a chapter describing the methods that can be used to predict UQ in systems, such as Monte Carlo, stochastic expansion, upscaling, Langevin dynamics, and inverse problems, with example applications in multiscale modeling, simulations, and materials design.

Tartalomjegyzék:
1. Introduction to Uncertainty Quantification for Engineers
2. Probability and Statistics in Uncertainty Quantification
3. Random Processes in Uncertainty Quantification
4. Sampling Methods in Uncertainty Quantification
5. Surrogate Modeling in Uncertainty Quantification
6. Model Selection, Calibration, and Validation in Uncertainty Quantification
7. Sensitivity Analysis in Uncertainty Quantification
8. Stochastic Expansion Methods in Uncertainty Quantification
9. Markov Models
10. Non-Probabilistic Methods in Uncertainty Quantification
11. Uncertainty propagation in Uncertainty Quantification