Gaussian Process Models for Quantitative Finance - Ludkovski, Michael; Risk, Jimmy; - Prospero Internetes Könyváruház

Gaussian Process Models for Quantitative Finance
 
A termék adatai:

ISBN13:9783031808739
ISBN10:3031808738
Kötéstípus:Puhakötés
Terjedelem:138 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white; 16 Illustrations, color
693
Témakör:

Gaussian Process Models for Quantitative Finance

 
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 53.49
Becsült forint ár:
22 690 Ft (21 609 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

20 874 (19 880 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 1 815 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.

Hosszú leírás:

This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.

Tartalomjegyzék:

- 1. Gaussian Process Preliminaries.- 2. Covariance Kernels.- 3. Advanced GP Modeling Topics.- 4. Option Pricing and Sensitivities.- 5. Optimal Stopping.- 6. Non-Parametric Modeling of Financial Structures.- 7. Stochastic Control.