• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Geocomputation with Python
      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 150.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        75 915 Ft (72 300 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 7 592 Ft off)
      • Discounted price 68 324 Ft (65 070 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Geocomputation with Python is a comprehensive resource for working with geographic data with the most popular programming language in the world. The book gives an overview of Python's capabilities for spatial data analysis, as well as many examples covering a range of GIS operations.

    Több

    Hosszú leírás:

    Geocomputation with Python is a comprehensive resource for working with geographic data with the most popular programming language in the world. The book gives an overview of Python's capabilities for spatial data analysis, as well as dozens of worked-through examples covering the entire range of standard GIS operations. A unique selling point of the book is its cohesive and joined-up coverage of both vector and raster geographic data models and consistent learning curve. This book is an excellent starting point for those new to working with geographic data with Python, making it ideal for students and practitioners beginning their journey with Python.


    Key features:



    • Showcases the integration of vector and raster datasets operations.

    • Provides explanation of each line of code in the book to minimize surprises.

    • Includes example datasets and meaningful operations to illustrate the applied nature of geographic research.


    Another unique feature is that this book is part of a wider community. Geocomputation with Python is a sister project of Geocomputation with R (Lovelace, Nowosad, and Muenchow 2019), a book on geographic data analysis, visualization, and modeling using the R programming language that has numerous contributors and an active community.


    The book teaches how to import, process, examine, transform, compute, and export spatial vector and raster datasets with Python, the most widely used language for data science and many other domains. Reading the book and running the reproducible code chunks within will make you a proficient user of key packages in the ecosystem, including shapely, geopandas, and rasterio. The book also demonstrates how to make use of dozens of additional packages for a wide range of tasks, from interactive map making to terrain modeling. Geocomputation with Python provides a firm foundation for more advanced topics, including spatial statistics, machine learning involving spatial data, and spatial network analysis, and a gateway into the vibrant and supportive community developing geographic tools in Python and beyond.

    Több

    Tartalomjegyzék:

    Preface  1. Geographic data in Python  2. Attribute data operations  3. Spatial data operations  4. Geometry operations  5. Raster-vector interactions  6. Reprojecting geographic data  7. Geographic data I/O  8. Making maps with Python  References

    Több
    Mostanában megtekintett
    previous
    Geocomputation with Python

    Geocomputation with Python

    Dorman, Michael; Graser, Anita; Nowosad, Jakub;

    75 915 Ft

    Optimization, Discrete Mathematics and Applications to Data Sciences

    Optimization, Discrete Mathematics and Applications to Data Sciences

    Nikeghbali, Ashkan; Pardalos, Panos M.; Rassias, Michael Th.; (ed.)

    59 001 Ft

    Testing and Modeling of Cellular Materials

    Testing and Modeling of Cellular Materials

    Spear, Derek G; Palazotto, Anthony N;

    22 769 Ft

    next