Gödel's Theorems and Zermelo's Axioms - Halbeisen, Lorenz; Krapf, Regula; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9783031851056
ISBN10:3031851056
Kötéstípus:Keménykötés
Terjedelem:342 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: XII, 342 p.
700
Témakör:

Gödel's Theorems and Zermelo's Axioms

A Firm Foundation of Mathematics
 
Kiadás sorszáma: Second Edition 2025
Kiadó: Birkhäuser
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 69.54
Becsült forint ár:
30 229 Ft (28 789 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

27 810 (26 486 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 2 418 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on Zermelo’s axioms, containing also a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. In addition, the corrected, revised and extended second edition now provides detailed solutions to all exercises.


The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory.

Hosszú leírás:

This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on Zermelo’s axioms, containing also a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. In addition, the corrected, revised and extended second edition now provides detailed solutions to all exercises.


The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory.

Tartalomjegyzék:

0. A Framework for Metamathematics.- Part I Introduction to First-Order Logic.- 1 Syntax: The Grammar of Symbols.- 2 The Art of Proof.- 3 Semantics: Making Sense of the Symbols.- Part II Gödel’s Completeness Theorem.- 4 Maximally Consistent Extensions.- 5 The Completeness Theorem.- 6 Language Extensions by Definitions.- Part III Gödel’s Incompleteness Theorems.- 7 Countable Models of Peano Arithmetic.- 8 Arithmetic in Peano Arithmetic.- 9 Gödelisation of Peano Arithmetic.- 10 The First Incompleteness Theorem.- 11 The Second Incompleteness Theorem.- 12 Completeness of Presburger Arithmetic.- Part IV The Axiom System ZFC.- 13 The Axioms of Set Theory (ZFC).- 14 Models of Set Theory.- 15 Models and Ultraproducts.- 16 Models of Peano Arithmetic.- 17 Models of the Real Numbers.- Tautologies.- Solutions.- References.- Index.