
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 160.49
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 5 446 Ft off)
- Discounted price 62 633 Ft (59 650 Ft + 5% áfa)
68 079 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Springer
- Megjelenés dátuma 2025. július 12.
- Kötetek száma 1 pieces, Book
- ISBN 9783031874680
- Kötéstípus Keménykötés
- Terjedelem400 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk Approx. 400 p. 0
Kategóriák
Rövid leírás:
Graph minor theory is one of the most influential and well-developed areas of graph theory, yet its key results, particularly the work of Robertson and Seymour, have remained scattered across numerous technical papers. This book fills an important gap by providing a comprehensive, structured treatment of the subject.
Divided into three main parts, the book first introduces the fundamentals of graph minor theory, focusing on the deep and powerful Minor Structure Theorem. It offers a clear roadmap for understanding the theorem’s proof, presenting its key ingredients while omitting only the most technical details. The second part explores a variety of applications, from algorithmic results to connections with the Linear Hadwiger Conjecture and graph coloring problems. The final section presents alternative approaches to graph minor theory that do not rely on the Minor Structure Theorem, covering topics such as sublinear separators, density, and isomorphism testing.
The exposition is rigorous yet accessible, striving to balance depth with readability. While some parts remain dense due to the complexity of the subject, the author provides valuable insights and explanations that make challenging concepts more approachable. The book not only serves as an excellent learning resource for graduate students and researchers entering the field but also as a long-lasting reference for experts.
TöbbHosszú leírás:
Graph minor theory is one of the most influential and well-developed areas of graph theory, yet its key results, particularly the work of Robertson and Seymour, have remained scattered across numerous technical papers. This book fills an important gap by providing a comprehensive, structured treatment of the subject.
Divided into three main parts, the book first introduces the fundamentals of graph minor theory, focusing on the deep and powerful Minor Structure Theorem. It offers a clear roadmap for understanding the theorem’s proof, presenting its key ingredients while omitting only the most technical details. The second part explores a variety of applications, from algorithmic results to connections with the Linear Hadwiger Conjecture and graph coloring problems. The final section presents alternative approaches to graph minor theory that do not rely on the Minor Structure Theorem, covering topics such as sublinear separators, density, and isomorphism testing.
The exposition is rigorous yet accessible, striving to balance depth with readability. While some parts remain dense due to the complexity of the subject, the author provides valuable insights and explanations that make challenging concepts more approachable. The book not only serves as an excellent learning resource for graduate students and researchers entering the field but also as a long-lasting reference for experts.
TöbbTartalomjegyzék:
Chapter 1. Introduction.- Part I. Understanding the structure theorem.- Chapter 2. Tree decompositions and treewidth.- Chapter 3. Linkedness.- Chapter 4. Graphs on surfaces.- Chapter 5. Towards the structure theorem.- Chapter 6. Pointers and sources.- Part II. Using the structure theorem.- Chapter 7. Low-treewidth colorings.- Chapter 8. Tighter grid theorem.- Chapter 9. Topological minors.- Chapter 10. Minors in large connected graphs.- Chapter 11. Sources.- Part III. Avoiding the structure theorem.- Chapter 12. Sublinear separators.- Chapter 13. Chordal partitions.- Chapter 14. Chromatic number.- Chapter 15. Product structure.- Chapter 16. Iterated layerings.- Chapter 17. Isomorphism testing.- Chapter 18. Sources.
Több