Identifiability and Regression Analysis of Biological Systems Models - Lecca, Paola; - Prospero Internetes Könyváruház

Identifiability and Regression Analysis of Biological Systems Models: Statistical and Mathematical Foundations and R Scripts
 
A termék adatai:

ISBN13:9783030412548
ISBN10:3030412547
Kötéstípus:Puhakötés
Terjedelem:82 oldal
Méret:235x155 mm
Súly:454 g
Nyelv:angol
Illusztrációk: 5 Illustrations, black & white; 8 Illustrations, color
0
Témakör:

Identifiability and Regression Analysis of Biological Systems Models

Statistical and Mathematical Foundations and R Scripts
 
Kiadás sorszáma: 1st ed. 2020
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 53.49
Becsült forint ár:
23 252 Ft (22 144 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

21 391 (20 372 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 1 860 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.
Nem tudnak pontosabbat?
 
 
Rövid leírás:

This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection.

Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting theirown regression analysis and diagnostics without supervision.

Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.

Hosszú leírás:

This richly illustrated book presents the objectives of, and the latest techniques for, the identifiability analysis and standard and robust regression analysis of complex dynamical models. The book first provides a definition of complexity in dynamic systems by introducing readers to the concepts of system size, density of interactions, stiff dynamics, and hybrid nature of determination. In turn, it presents the mathematical foundations of and algorithmic procedures for model structural and practical identifiability analysis, multilinear and non-linear regression analysis, and best predictor selection.

Although the main fields of application discussed in the book are biochemistry and systems biology, the methodologies described can also be employed in other disciplines such as physics and the environmental sciences. Readers will learn how to deal with problems such as determining the identifiability conditions, searching for an identifiable model, and conducting theirown regression analysis and diagnostics without supervision.

Featuring a wealth of real-world examples, exercises, and codes in R, the book addresses the needs of doctoral students and researchers in bioinformatics, bioengineering, systems biology, biophysics, biochemistry, the environmental sciences and experimental physics. Readers should be familiar with the fundamentals of probability and statistics (as provided in first-year university courses) and a basic grasp of R.


Tartalomjegyzék:
1 Complex systems and sets of data.- 2 Dynamic models.- 3 Model identifiability.- 4 Relationships between phenomena.- 5 Codes.