Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems - Wood, David A.; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9780443265105
ISBN10:04432651011
Kötéstípus:Puhakötés
Terjedelem:475 oldal
Méret:234x190 mm
Súly:450 g
Nyelv:angol
700
Témakör:

Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems

Prediction Models Exploiting Well-Log Information
 
Kiadó: Elsevier
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
EUR 153.99
Becsült forint ár:
66 939 Ft (63 751 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

60 245 (57 376 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 694 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:
Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized-and sparse datasets of input variables enhanced and/or rescaled-to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more.

Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic.
Tartalomjegyzék:
1. Regression models to estimate total organic carbon (TOC) from well-log data
2. Predicting brittleness indexes in tight formation sequences
3. Classifying lithofacies in clastic, carbonate, and mixed reservoir sequences
4. Permeability and water saturation distributions in complex reservoirs
5. Trapping mechanisms in potential sub-surface carbon storage reservoirs
6. The accurate picking of formation tops in field development wells
7. Assessing formation loss of circulation risks with mud-log datasets
8. Delineating fracture densities and apertures using well-log image data
9. Determining reservoir microfacies using photomicrograph and computed tomography image data
10. Characterizing coal-bed methane reservoirs with well-log datasets