
Institution-independent Model Theory
Sorozatcím: Studies in Universal Logic;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 149.79
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 5 083 Ft off)
- Discounted price 58 457 Ft (55 674 Ft + 5% áfa)
63 540 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Second Edition 2025
- Kiadó Birkhäuser
- Megjelenés dátuma 2025. március 6.
- Kötetek száma 1 pieces, Book
- ISBN 9783031688539
- Kötéstípus Keménykötés
- Terjedelem568 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk 2 Illustrations, color 693
Kategóriák
Rövid leírás:
A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise general mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed axiomatic top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. Consequently, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained. Moreover, all this is also applied to non-classical model theories.
This second edition introduces some novelties in the presentation style which aim to enhance the readability of the material and the proofs. Additional chapters have also been added.
TöbbHosszú leírás:
A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise general mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed axiomatic top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. Consequently, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained. Moreover, all this is also applied to non-classical model theories.
This second edition introduces some novelties in the presentation style which aim to enhance the readability of the material and the proofs. Additional chapters have also been added.
TöbbTartalomjegyzék:
- Introduction.- Part I Basics.- Categories.- Institutions.- Theories and Models.- Internal Logic.- Part II Advanced Topics.- Model Ultraproducts.- Saturated Models.- Preservation and Axiomatizability.- Interpolation.- Definability.- Part III Extensions.- Institutions with Proofs.- Models with States.- Many-valued Truth Institutions.- Part IV Applications to Computing.- Grothendieck Institutions.- Specification.- Logic Programming.
Több