ISBN13: | 9781032356594 |
ISBN10: | 1032356596 |
Kötéstípus: | Puhakötés |
Terjedelem: | 356 oldal |
Méret: | 234x156 mm |
Súly: | 657 g |
Nyelv: | angol |
Illusztrációk: | 66 Illustrations, black & white; 1 Halftones, black & white; 65 Line drawings, black & white; 39 Tables, black & white |
700 |
Valószínűségelmélet és matematikai statisztika
A számítástudomány elmélete, a számítástechnika általában
Adatbázis kezelő szoftverek
Közgazdaságtan
Elméleti pszichológia
Valószínűségelmélet és matematikai statisztika (karitatív célú kampány)
A számítástudomány elmélete, a számítástechnika általában (karitatív célú kampány)
Adatbázis kezelő szoftverek (karitatív célú kampány)
Közgazdaságtan (karitatív célú kampány)
Elméleti pszichológia (karitatív célú kampány)
Introduction to Quantitative Social Science with Python
GBP 50.00
Kattintson ide a feliratkozáshoz
A Prosperónál jelenleg nincsen raktáron.
Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.
Departing from traditional methodologies of teaching data analysis, this book presents a dual-track learning experience, with both Executive and Technical Tracks, designed to accommodate readers with various learning goals or skill levels. Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.
Emphasizing the practical relevance of data analysis in today's world, the book equips readers with essential skills for success in the field. By advocating for the use of Python, an open-source and versatile programming language, we break down financial barriers and empower a diverse range of learners to access the tools they need to excel.
Whether you're a novice seeking to grasp the foundational concepts of data analysis or a seasoned professional looking to enhance your programming skills, this book offers a comprehensive and accessible guide to mastering the art and science of data analysis in social science research.
Key Features:
- Dual-track learning: Offers both Executive and Technical Tracks, catering to readers with varying levels of conceptual and technical proficiency in data analysis.
- Includes comprehensive quantitative methodologies for quantitative social science studies.
- Seamless integration: Interconnects key concepts between tracks, ensuring a smooth transition from theory to practical implementation for a comprehensive learning experience.
- Emphasis on Python: Focuses on Python programming language, leveraging its accessibility, versatility, and extensive online support to equip readers with valuable data analysis skills applicable across diverse domains.
Part 1: ?Executive Track? 1. Introduction to Data Analysis in Social Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis 6. Classification 7. Complex Network Analysis 8. Text As Data Part 2: ?Technical Track? 9. Python Programming Fundamentals 10. Data Collection and Cleaning 11. Condition Checking and Descriptive and Exploratory Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and Regression Analysis 14. Generators and Classification 15. More Generators and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to Select Exercises Bibliography