A termék adatai:
ISBN13: | 9783030916978 |
ISBN10: | 3030916979 |
Kötéstípus: | Puhakötés |
Terjedelem: | 685 oldal |
Méret: | 235x155 mm |
Súly: | 1062 g |
Nyelv: | angol |
Illusztrációk: | 7 Illustrations, black & white; 2 Illustrations, color |
535 |
Témakör:
Large Sample Techniques for Statistics
Sorozatcím:
Springer Texts in Statistics;
Kiadás sorszáma: 2nd ed. 2022
Kiadó: Springer
Megjelenés dátuma: 2023. április 6.
Kötetek száma: 1 pieces, Book
Normál ár:
Kiadói listaár:
EUR 74.89
EUR 74.89
Az Ön ára:
26 043 (24 803 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 6 511 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.
This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.
The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.
The book's case studies and applications-oriented chapters demonstrate how to usemethods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.
This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..
Hosszú leírás:
This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.
The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.
The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.
This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..
Tartalomjegyzék:
Chapter 1. The -? Arguments.- Chapter 2. Modes of Convergence.- Chapter 3. Big O, Small o, and the Unspecified c.- Chapter 4. Asymptotic Expansions.- Chapter 5. Inequalities.- Chapter 6. Sums of Independent Random Variables.- Chapter 7. Empirical Processes.- Chapter 8. Martingales.- Chapter 9. Time and Spatial Series.- Chapter 10. Stochastic Processes.- Chapter 11. Nonparametric Statistics.- Chapter 12. Mixed Effects Models.- Chapter 13. Small-Area Estimation.- Chapter 14. Jackknife and Bootstrap.- Chapter 15. Markov-Chain Monte Carlo.- Chapter 16. Random Matrix Theory.