Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems
 
A termék adatai:

ISBN13:9789819726165
ISBN10:9819726166
Kötéstípus:Keménykötés
Terjedelem:328 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white; 49 Illustrations, color
700
Témakör:

Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 171.19
Becsült forint ár:
72 978 Ft (69 503 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

58 383 (55 602 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 14 596 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book is a monograph about limit cycles and homoclinic networks in polynomial systems. The study of dynamical behaviors of polynomial dynamical systems was stimulated by Hilbert?s sixteenth problem in 1900. Many scientists have tried to work on Hilbert's sixteenth problem, but no significant results have been achieved yet. In this book, the properties of equilibriums in planar polynomial dynamical systems are studied. The corresponding first integral manifolds are determined. The homoclinic networks of saddles and centers (or limit cycles) in crossing-univariate polynomial systems are discussed, and the corresponding bifurcation theory is developed. The corresponding first integral manifolds are polynomial functions. The maximum numbers of centers and saddles in homoclinic networks are obtained, and the maximum numbers of sinks, sources, and saddles in homoclinic networks without centers are obtained as well. Such studies are to achieve global dynamics of planar polynomial dynamical systems, which can help one study global behaviors in nonlinear dynamical systems in physics, chemical reaction dynamics, engineering dynamics, and so on. This book is a reference for graduate students and researchers in the field of dynamical systems and control in mathematics, mechanical, and electrical engineering.

Hosszú leírás:

This book is a monograph about limit cycles and homoclinic networks in polynomial systems. The study of dynamical behaviors of polynomial dynamical systems was stimulated by Hilbert?s sixteenth problem in 1900. Many scientists have tried to work on Hilbert's sixteenth problem, but no significant results have been achieved yet. In this book, the properties of equilibriums in planar polynomial dynamical systems are studied. The corresponding first integral manifolds are determined. The homoclinic networks of saddles and centers (or limit cycles) in crossing-univariate polynomial systems are discussed, and the corresponding bifurcation theory is developed. The corresponding first integral manifolds are polynomial functions. The maximum numbers of centers and saddles in homoclinic networks are obtained, and the maximum numbers of sinks, sources, and saddles in homoclinic networks without centers are obtained as well. Such studies are to achieve global dynamics of planar polynomial dynamical systems, which can help one study global behaviors in nonlinear dynamical systems in physics, chemical reaction dynamics, engineering dynamics, and so on. This book is a reference for graduate students and researchers in the field of dynamical systems and control in mathematics, mechanical, and electrical engineering.

Tartalomjegyzék:

Introduction.- Homoclinic Networks without Centers.- Bifurcations for Homoclinic Networks without Centers.- Homoclinic Networks with Centers.- Bifurcations for Homoclinic Networks with Centers.