Linear Algebra with Python - Tsukada, Makoto; Kobayashi, Yuji; Kaneko, Hiroshi; - Prospero Internetes Könyváruház

Linear Algebra with Python: Theory and Applications
 
A termék adatai:

ISBN13:9789819929504
ISBN10:9819929504
Kötéstípus:Keménykötés
Terjedelem:309 oldal
Méret:254x178 mm
Súly:809 g
Nyelv:angol
Illusztrációk: 27 Illustrations, black & white; 64 Illustrations, color
710
Témakör:

Linear Algebra with Python

Theory and Applications
 
Kiadás sorszáma: 1st ed. 2023
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 64.19
Becsült forint ár:
27 364 Ft (26 061 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

21 891 (20 849 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 5 473 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.



A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron?Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.



Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python?s libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.

Hosszú leírás:

This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.



A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron?Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences.



Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding.  By using Python?s libraries NumPy, Matplotlib, VPython, and SymPy,  readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations.  All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.
Tartalomjegyzék:
Mathematics and Python.- Linear Spaces and Linear Mappings.- Basis and Dimension.- Matrices.- Elementary Operations and Matrix Invariants.- Inner Product and Fourier Expansion.- Eigenvalues and Eigenvectors.- Jordan Normal Form and Spectrum.- Dynamical Systems.- Applications and Development of Linear Algebra.