Machine Intelligence and Smart Systems - Gupta, Manish; Agrawal, Shikha; Gupta, Kamlesh;(szerk.) - Prospero Internetes Könyváruház

Machine Intelligence and Smart Systems

Third International Conference, MISS 2023, Bhopal, India, January 24?25, 2023, Revised Selected Papers, Part I
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 64.19
Becsült forint ár:
27 364 Ft (26 061 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

21 891 (20 849 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 5 473 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Hosszú leírás:

?The two-volume set CCIS 1951 and 1952 constitutes the refereed post-conference proceedings of the Third International Conference on Machine Intelligence and Smart Systems, MISS 2023, Bhopal, India, during January 24-25, 2023. 



The 58 full papers included in this book were carefully reviewed and selected from 203 submissions. They were organized in topical sections as follows: Language processing; Recent trends; AI defensive schemes; Principle components; Deduction and prevention models.

Tartalomjegyzék:

.- Machine Intelligence.



.- Deep Learning based Novel Approach for Mammogram Classification using Densenet-169.



.- Attribute Based Federated-Reinforcement Learning Approach for Drone Authorization.



.- Chronic Kidney Disease prediction and interpretation using Explainable AI.



.- Systematic review and analysis of Artificial intelligence based breast cancer classification and detection.



.- War of Tweets: Sentiment Analysis on Ukraine Russia Conflict.



.- Implementing HRRN for evaluating Cloud performance using Reinforcement Learning.



.- Using Machine Learning for Prediction of Obstructions for Indoor Location Systems.



.- Privacy Threats and Protection in Artificial Intelligence and Machine Learning.



.- Combining linguistic information with BERT for Span based End-to-End Aspect Based Sentiment Analysis.



.- A Dimensionality Reduction Model: A Retrospective Approach on Dementia Triggering Parameters and Feature Ranking.



.- Effective Identification of Lung Diseases using Few-Shot Learning.



.- Comparative Study on Classification based- Data Mining Techniques in Early Diabetes Prediction.



.- Optimize Machine Learning Model for Sentiment Analysis of Online Education during Covid-19 Pandemic.



.- Review on the Challenges and Future Directions of Deep Learning-based Techniques for Advance Prediction of Cardiac Attack.



.- Different Techniques For Detecting  Plant Leaf Disease Using Machine  Learning.



.- Proposed Framework of Extensive Humanoid Design Cycle and Recent Developments in Bipedal Walk.



.- Natural Language Processing for Waste Management Using Public Opinions in Smart Cities.



.- Prediction of Diabetes during Pregnancy through Fog Environment.



.- Empirical Wavelet Transform grounded poignant ground target recognition and classification by Seismic Signal Processing.



.- A Powered-Up Classification of Disabling Distributed Network Cloud-Based Attacks Using MLPNN-BP and MLPNN-LM.



.- Stroke Prediction Framework Based on Missing Value Information and Outlier Detection by Using Machine Learning Techniques in E-Healthcare.



.- An Artificial Bee Colony Improved Deep Neural Network Prototypical for Controlling Unprovoked Stroke Data in Iot Environment.



.- Magnetic Resonance Imaging Digitization for Brain Abnormality Recognition.



.- Comparative investigation of ELM and No-Prop processes for Clustering and Classification: An Empirical Study.



.- Application of Theory of Nonlinear Dynamics to Study Automated Detection of Epileptic EEG Signals.



.- Writer-autonomous Offline Autograph Detection founded upon Histogram of oriented gradients (HOGs) feature.



.- Analysis & evaluation for segmentation of cancer in multi-parametric.