Materials Informatics III - Roy, Kunal; Banerjee, Arkaprava; (szerk.) - Prospero Internetes Könyváruház

Materials Informatics III: Polymers, Solvents and Energetic Materials
 
A termék adatai:

ISBN13:9783031787232
ISBN10:3031787234
Kötéstípus:Keménykötés
Terjedelem:440 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 45 Illustrations, black & white
700
Témakör:

Materials Informatics III

Polymers, Solvents and Energetic Materials
 
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 213.99
Becsült forint ár:
93 021 Ft (88 591 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

85 579 (81 504 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 7 442 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

The contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure-property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.

Hosszú leírás:

The contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure?property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.

Tartalomjegyzék:

Part 1. Introduction.- Introduction to Machine Learning for Predictive Modeling II.- Introduction to predicting properties of organic materials.- Part 2. Cheminformatic and Machine Learning Models for Polymers.- Machine Learning Applications in Polymer Informatics ? An Overview.- Applications of predictive modeling for selected properties of polymers.- Polymer Property Prediction using Machine Learning.- Applications of predictive modeling for polymers.- Part 3. Cheminformatic and Machine Learning Models for Solvents.- Applications of predictive QSPR modeling for deep eutectic solvents.- Applications of predictive modeling for various properties of ionic liquids.- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials.- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials.- Predictive modeling for energetic materials.- Modeling the performance of energetic materials.- Applications of predictive modeling for energetic materials.