• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Mathematik für Informatik und Data Science: Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen

    Mathematik für Informatik und Data Science by Knoblauch, Andreas;

    Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen

    Sorozatcím: Studienbücher Informatik;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 44.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        19 084 Ft (18 175 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 527 Ft off)
      • Discounted price 17 557 Ft (16 721 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer Vieweg
    • Megjelenés dátuma 2024. december 19.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783662694787
    • Kötéstípus Puhakötés
    • Terjedelem439 oldal
    • Méret 240x168 mm
    • Nyelv német
    • Illusztrációk 95 Illustrations, black & white
    • 672

    Kategóriák

    Rövid leírás:

    Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur ?glauben? zu müssen.



     



    Der Inhalt




    • Mathematische und logische Grundlagen

    • Rechnen in Körpern

    • Grenzwerte von Folgen und Reihen

    • Rationale Funktionen und Stetigkeit

    • Differentialrechnung

    • Integration

    • Die komplexe Exponentialfunktion und die trigonometrischen Funktionen

    • Vektorrechnung und Lineare Algebra

    • Fortgeschrittene Methoden der Linearen Algebra

    • Mehrdimensionale Differentialrechnung

    • Kombinatorik und Wahrscheinlichkeitsrechnung



    Der Autor



    Andreas Knoblauch ist Professor für Informatik an der Hochschule Albstadt-Sigmaringen. Er unterrichtet dort in den Studiengängen Technische Informatik, IT-Security, Wirtschaftsinformatik, Systems Engineering und Data Science unter anderem Mathematik, Intelligente Systeme, Maschinelles Lernen und Mustererkennung. Daneben forscht er im Bereich Bildverarbeitung, Objekterkennung, Neuronale Netze, Neuromorphe Assoziativspeicher und Selbstreferentielles Autonomes Lernen.

    Több

    Hosszú leírás:

    Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur ?glauben? zu müssen.

    Több

    Tartalomjegyzék:

    1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.

    Több