ISBN13: | 9781032411941 |
ISBN10: | 1032411945 |
Kötéstípus: | Puhakötés |
Terjedelem: | 367 oldal |
Méret: | 234x156 mm |
Súly: | 453 g |
Nyelv: | angol |
Illusztrációk: | 133 Illustrations, black & white; 133 Line drawings, black & white; 271 Tables, black & white |
700 |
A matematika általános kérdései
Alkalmazott matematika
Matematika a mérnöki- és természettudományok területén
A mérnöki tudományok általános kérdései
Gépészmérnöki tudományok
Mechanika
Fémipar, fémfeldolgozó ipar
A matematika általános kérdései (karitatív célú kampány)
Alkalmazott matematika (karitatív célú kampány)
Matematika a mérnöki- és természettudományok területén (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
Gépészmérnöki tudományok (karitatív célú kampány)
Mechanika (karitatív célú kampány)
Fémipar, fémfeldolgozó ipar (karitatív célú kampány)
Multiaxial Notch Fracture and Fatigue
GBP 45.99
Kattintson ide a feliratkozáshoz
This book presents unified fatigue life prediction equations for a low/medium/high cycle fatigue of metallic materials, relevant to plain materials and notched components.
This book presents the unified fatigue life prediction equation for low/medium/high cycle fatigue of metallic materials relevant to plain materials and notched components. The unified fatigue life prediction equation is the Wöhler equation, in which the "stress-based intensity parameter" is calculated based on the linear-elastic analysis.
A local approach for the static fracture analysis for notched components is presented based on the notch linear-elastic stress field. In the local approach, a stress intensity parameter is taken as a stress-based intensity parameter. Experimental verifications show that the local approach is also suited for the static fracture analysis for notched components made of ductile materials.
The book is also concerned with a material failure problem under the multiaxial stress states. A concept of the material intensity parameter is introduced in this book. It is a material property parameter that depends on both Mode-I fracture toughness and Mode-II (or Mode-III) fracture toughness and the multiaxial parameter to characterize the variation of the material failure resistance (notch fracture toughness) with the multiaxial stresses states. The failure condition to assess mixed-mode fracture of notched (or cracked) components is stated as the stress-based intensity parameter being equal to the material intensity parameter.
With respect to the traditional S-N equation, a similar S-N equation is presented and verified to have high accuracy.
This book will be of interest to professionals in the field of fatigue and fracture for both brittle and ductile materials.
1. Introduction, 2. Applicability of the Wöhler Curve Method for a Low/Medium/High Cycle Fatigue of Metallic Materials, 3. Notch S-N Equation for a Low/Medium/High Cycle Fatigue of Metallic Materials, 4. A Local Approach for Fracture Analysis of V-Notch Specimens Under Mode I Loading, 5. A Local Stress Field Failure Model for Sharp Notches, 6. An Empirical Fracture Equation of Mixed Mode Cracks, 7. An Empirical Failure Equation to Assess Mixed-Mode Fracture of Notched Components, 8. A New Type of S-N Equation and Its Application to Multiaxial Fatigue Life Prediction