Multimodal Biometric Identification System - Dhole, Sampada; Bairagi, Vinayak; - Prospero Internetes Könyváruház

Multimodal Biometric Identification System: Case Study of Real-Time Implementation
 
A termék adatai:

ISBN13:9781032660585
ISBN10:1032660589
Kötéstípus:Keménykötés
Terjedelem:142 oldal
Méret:234x156 mm
Súly:421 g
Nyelv:angol
Illusztrációk: 108 Illustrations, black & white; 24 Halftones, black & white; 84 Line drawings, black & white; 20 Tables, black & white
695
Témakör:

Villamosmérnöki tudományok, híradástechnika, műszeripar

A számítástudomány elmélete, a számítástechnika általában

Rendszerszervezés

Számítógép architektúrák, logikai tervezés

Szuperszámítógépek

Operációs rendszerek és grafikus felhasználói felületek

Szoftverfejlesztés

Mesterséges intelligencia

Környezetmérnöki tudományok

Az internetről általában

További könyvek a számítástechnika területén

Villamosmérnöki tudományok, híradástechnika, műszeripar (karitatív célú kampány)

A számítástudomány elmélete, a számítástechnika általában (karitatív célú kampány)

Rendszerszervezés (karitatív célú kampány)

Számítógép architektúrák, logikai tervezés (karitatív célú kampány)

Szuperszámítógépek (karitatív célú kampány)

Operációs rendszerek és grafikus felhasználói felületek (karitatív célú kampány)

Szoftverfejlesztés (karitatív célú kampány)

Mesterséges intelligencia (karitatív célú kampány)

Környezetmérnöki tudományok (karitatív célú kampány)

Az internetről általában (karitatív célú kampány)

További könyvek a számítástechnika területén (karitatív célú kampány)

Multimodal Biometric Identification System

Case Study of Real-Time Implementation
 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 155.00
Becsült forint ár:
81 375 Ft (77 500 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

65 100 (62 000 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 16 275 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor level and feature level fusion. Most of the biometric systems presently use unimodal systems which have several limitations. 

Hosszú leírás:

This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor-level and feature-level fusion. Most of the biometric systems presently use unimodal systems, which have several limitations. Multimodal systems can increase the matching accuracy of a recognition system. This monograph shows how the problems of unimodal systems can be dealt with efficiently, and focuses on multimodal biometric identification and sensor-level, feature-level fusion. It discusses fusion in biometric systems to improve performance.


? Presents a random selection of biometrics to ensure that the system is interacting with a live user.


? Offers a compilation of all techniques used for unimodal as well as multimodal biometric identification systems, elaborated with required justification and interpretation with case studies, suitable figures, tables, graphs, and so on.


? Shows that for feature-level fusion using contourlet transform features with LDA for dimension reduction attains more accuracy compared to that of block variance features.


? Includes contribution in feature extraction and pattern recognition for an increase in the accuracy of the system.


? Explains contourlet transform as the best modality-specific feature extraction algorithms for fingerprint, face, and palmprint.


This book is for researchers, scholars, and students of Computer Science, Information Technology, Electronics and Electrical Engineering, Mechanical Engineering, and people working on biometric applications.

Tartalomjegyzék:

Preface.................................................................................................................... viii


Author Biography........................................................................................................x


Chapter 1 Introduction...........................................................................................1


1.1 Biometric Identification System.................................................1


1.1.1 Enrolment Module........................................................2


1.2 Current Status of Biometric Identification Systems...................3


1.3 Applications of Biometric Systems............................................5


References.............................................................................................5


Chapter 2 An Overview of Biometrics..................................................................6


2.1 Biometrics...................................................................................6


2.1.1 Advantages of Biometrics.............................................7


2.1.2 Disadvantages of Biometrics.........................................8


2.1.3 Types of Biometrics.......................................................8


2.2 Fingerprint..................................................................................8


2.2.1 Minutiae-based Technique............................................9


2.2.2 Correlation-based Technique........................................9


2.2.3 Advantages and Disadvantages of Fingerprint


Biometrics.....................................................................9


2.2.4 Applications of Fingerprinting.................................... 10


2.3 Iris Recognition........................................................................ 10


2.3.1 Advantages of Iris Technology.................................... 10


2.3.2 Disadvantages of Iris Technology............................... 10


2.3.3 Applications of Iris Recognition System..................... 11


2.3.4 Real-Life Applications................................................ 11


2.4 Retinal Pattern Biometrics....................................................... 11


2.4.1 Advantages of Retinal Recognition............................. 12


2.4.2 Disadvantages of Retinal Recognition........................ 12


2.5 Facial Recognition Biometrics................................................. 12


2.5.1 Challenges in Face Recognition.................................. 13


2.5.2 Advantages of Biometric Facial Recognition.............. 13


2.5.3 Disadvantages of Biometric Face Recognition........... 13


2.5.4 Applications................................................................. 13


2.6 Handwriting.............................................................................. 14


2.6.1 Advantages and Disadvantages of Handwriting


Recognition................................................................. 14


2.7 Voice Biometric........................................................................ 14


2.7.1 Advantages.................................................................. 15


2.7.2 Disadvantages.............................................................. 15


2.8 Ear Recognition........................................................................ 15


2.8.1 Advantages.................................................................. 15


2.8.2 Disadvantages.............................................................. 15


2.9 Summary.................................................................................. 16


Chapter 3 Motivation behind Multimodal Biometric Systems............................ 17


3.1 Introduction.............................................................................. 17


3.1.1 Advantages of Multimodal Systems over


Unimodal Systems...................................................... 18


3.2 Multimodal Biometric Integration Architecture...................... 19


3.3 Multimodal Biometric Integration Scenarios........................... 19


3.4 Multimodal Biometric Fusion Levels....................................... 21


3.4.1 Pre-mapping Fusion.................................................... 21


3.4.2 Post-mapping Fusion...................................................25


References...........................................................................................28


Chapter 4 Performance Measurement Parameters for Biometric Systems.......... 31


4.1 Performance Measurement Parameters.................................... 31


4.2 Materials................................................................................... 33


4.2.1 Fingerprint Database...................................................34


4.2.2 Face Database..............................................................34


4.2.3 Hand Database............................................................ 35


4.3 Summary.................................................................................. 35


Reference............................................................................................. 35


Chapter 5 Unimodal Biometric Systems..............................................................36


5.1 Unimodal Biometric Identification System..............................36


5.1.1 DWT Feature Extraction System................................ 37


5.1.2 Gabor Feature Extraction System...............................38


5.1.3 Curvelet Transform.....................................................40


5.1.4 Contourlet Transform.................................................. 41


5.2 Fingerprint as a Biometric Modality........................................ 41


5.2.1 Techniques for Fingerprint Matching......................... 42


5.2.2 Minutiae-Based Feature Extraction System................ 42


5.2.3 Texture-Based Fingerprint Recognition System......... 45


5.3 Face as a Biometric Modality...................................................49


5.3.1 Texture-Based Face Recognition System....................49


5.4 Hand Geometry as a Biometric Modality................................ 51


5.4.1 Hand Geometry Recognition Using 12 Geometry


Features....................................................................... 55


5.4.2 Hand Geometry Recognition Using 21 Geometry


Features.......................................................................56


5.5 Palmprint as a Biometric Modality.......................................... 58


5.5.1 Contourlet Transform..................................................63


Contents vii


5.6 Euclidean Distance as a Classifier............................................ 67


5.7 Summary.................................................................................. 71


References........................................................................................... 71


Chapter 6 Multimodal Biometric Identification Systems Using


Sensor-Level Fusion............................................................................ 72


6.1 Multimodal Biometric Identification System........................... 72


6.2 Sensor-Level Fusion................................................................. 72


6.3 Basic Structure for Sensor-Level Fusion.................................. 73


6.4 Sensor-Level Fusion of Low-Frequency and High-


Frequency Features................................................................... 75


6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78


6.6 Summary.................................................................................. 81


Chapter 7 Multimodal Biometric Identification Systems Using


Feature-Level Fusion...........................................................................82


7.1 Multimodal Biometric System.................................................82


7.2 Feature-Level Fusion Using Block Variance Features.............83


7.2.1 Feature-Level Fusion of 128 Feature Vector...............83


7.2.2 Feature-Level Fusion of 32 Feature Vector.................85


7.2.3 Concatenated Features................................................ 91


7.2.4 Sum Features...............................................................92


7.2.5 Maximum Features.....................................................92


7.2.6 Minimum Features......................................................92


7.3 Feature-Level Fusion Using Contourlet Transform Features...92


7.4 Normalisation Technique for Hand Geometry Features..........95


7.5 Linear Discriminate Analysis (LDA).......................................97


7.6 Summary................................................................................ 100


Chapter 8 Result and Discussion....................................................................... 101


8.1 Result and Discussion............................................................. 101


8.1.1 Databases Used......................................................... 101


8.1.2 Results of Performance Measurement


Parameters of the Biometric Systems....................... 101


8.1.3 Results of Performance Measurement


Parameters of Multimodal Recognition System....... 104


8.1.4 Score Distribution of Biometric System.................... 113


8.1.5 Analysis..................................................................... 120


8.2 Conclusions............................................................................. 122


8.3 Future Scope...........................................................................124


Index....................................................................................................................... 125