Newton Methods for Nonlinear Problems - Deuflhard, Peter; - Prospero Internetes Könyváruház

Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms
 
A termék adatai:

ISBN13:9783642238987
ISBN10:364223898X
Kötéstípus:Puhakötés
Terjedelem:424 oldal
Méret:235x155 mm
Súly:670 g
Nyelv:angol
Illusztrációk: 49 Illustrations, black & white
10
Témakör:

Newton Methods for Nonlinear Problems

Affine Invariance and Adaptive Algorithms
 
Kiadás sorszáma: 2011
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 80.24
Becsült forint ár:
34 037 Ft (32 416 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

31 314 (29 823 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 2 723 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

Hosszú leírás:
This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

From the reviews:

?This monograph covers a multitude of Newton methods and presents the algorithms and their convergence analysis from the perspective of affine invariance, which has been the subject of research by the author since 1970. ? The book is intended for graduate students of mathematics and computational science and also for researchers in the area of numerical analysis and scientific computing. ? As a research monograph, the book not only assembles the current state of the art, but also points to future research prospects.? (Gudula Runger, ACM Computing Reviews, June, 2012)