Numerical Methods for Engineering and Data Science - Wuthrich, Rolf; El Ayoubi, Carole; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9781032200699
ISBN10:1032200693
Kötéstípus:Keménykötés
Terjedelem:478 oldal
Méret:229x152 mm
Nyelv:angol
Illusztrációk: 116 Illustrations, black & white; 1 Halftones, black & white; 115 Line drawings, black & white; 13 Tables, black & white
700
Témakör:

Numerical Methods for Engineering and Data Science

 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 130.00
Becsült forint ár:
65 793 Ft (62 660 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

59 214 (56 394 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 579 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

Numerical Methods for Engineering and Data Science guides students in implementing numerical methods in engineering and in assessing their limitations and accuracy, particularly using algorithms from the field of machine learning.

Hosszú leírás:

Numerical Methods for Engineering and Data Science guides students in implementing numerical methods in engineering and in assessing their limitations and accuracy, particularly using algorithms from the field of machine learning.


The textbook presents key principles building upon the fundamentals of engineering mathematics. It explores classical techniques for solving linear and nonlinear equations, computing definite integrals and differential equations. Emphasis is placed on the theoretical underpinnings, with an in-depth discussion of the sources of errors, and in the practical implementation of these using Octave. Each chapter is supplemented with examples and exercises designed to reinforce the concepts and encourage hands-on practice. The second half of the book transitions into the realm of machine learning. The authors introduce basic concepts and algorithms, such as linear regression and classification. As in the first part of this book, a special focus is on the solid understanding of errors and practical implementation of the algorithms. In particular, the concepts of bias, variance, and noise are discussed in detail and illustrated with numerous examples.


This book will be of interest to students in all areas of engineering, alongside mathematicians and scientists in industry looking to improve their knowledge of this important field.

Tartalomjegyzék:

1. Introduction Part I ? Numerical Methods for Engineering Applications 2. Numerical Errors 3. Solving Algebraic Equations 4. Systems of Linear Equations 5. Orthogonality 6 Linear Least Square Regression 7. Polynomial Interpolation 8. Numerical Integration 9. Initial Value Problems Part II ? Numerical Methods for Data Analysis 10. Machine Learning 11. Regression Models 12. Model Selection 13. Classification 14. Tree-Based Algorithms