ISBN13: | 9781032621661 |
ISBN10: | 1032621664 |
Kötéstípus: | Keménykötés |
Terjedelem: | 334 oldal |
Méret: | 234x156 mm |
Súly: | 775 g |
Nyelv: | angol |
Illusztrációk: | 53 Illustrations, black & white; 8 Halftones, black & white; 45 Line drawings, black & white; 55 Tables, black & white |
698 |
Alkalmazott matematika
Villamosmérnöki tudományok, híradástechnika, műszeripar
Energetika, energiaipar
A számítástudomány elmélete, a számítástechnika általában
Számítógép architektúrák, logikai tervezés
Számítógépes programozás általában
Szoftverfejlesztés
Számítógépes hálózatok általában
Mesterséges intelligencia
Környezetmérnöki tudományok
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making
GBP 150.00
Kattintson ide a feliratkozáshoz
A Prosperónál jelenleg nincsen raktáron.
The book discusses nature-inspired algorithms, deep learning methods, applications of mathematical programming, and artificial intelligence techniques and covers important topics such as the use of machine learning and the internet of things, multi-objective optimization under Hesitant Fermatean Fuzzy and Uncertain environment.
This book comprehensively discusses nature?inspired algorithms, deep learning methods, applications of mathematical programming, and artificial intelligence techniques. It further covers important topics such as the use of machine learning and the Internet of Things and multi?objective optimization under Fermatean hesitant fuzzy and uncertain environment.
This book:
- Addresses solving practical problems such as supply chain management, smart manufacturing, and healthcare analytics using intelligent computing and discusses solving the fuzzy inference system in ant colony optimization for traveling salesman problem
- Presents an overview of artificial intelligence (AI) and explainable AI decision?making (XAIDM) and illustrates a data?driven optimization concept for modeling environmental and economic sustainability
- Discusses machine learning?based multi?objective optimization technique for load balancing in integrated fog?cloud environment
- Explains the use of heuristics and metaheuristics in supply chain networks and the use of fuzzy optimization in sustainable development goals
- Discusses sustainable transit of hazardous waste, green fractional transportation system, perishable inventory, M?estimation of functional regression operator, and intuitionistic fuzzy sets applications
The text is primarily written for graduate students and academic researchers in diverse fields, including operations research, mathematics, statistics, computer science, information and communication technology, and industrial engineering.
1. M-Estimation of Functional Regression Operator with Responses Missing at Random. 2. A Multi-Objective Solid Transportation Problem for the Sustainable Transit of Hazardous Waste in the Complex Fermatean Hesitant Fuzzy Environment. 3. A Framework of Hybrid Metaheuristic H - Gey Optimization for Embedding Factor Decision Making in Digital Image Watermarking on Social Media. 4. New Cosine Similarity Measures For Intuitionistic Fuzzy Sets With Application In Decision Making. 5. Multi-Objective Optimization Problems in Focus: Meaning, Approaches, and Implementation. 6. Optimization and Computing Using Intelligent Data-Driven Approaches for Decision-Making. 7. Evaluation of Factors Affecting Destination Selection in Medical Tourism with Spherical Fuzzy Analytic Hierarchy Process Method. 8. Effect Of Artificial Intelligence On Education. 9. Unleashing the Power of IoT: Transforming Industries and Enabling Connected Environments. 10. A multi-Echelon Multi-Objective Sustainable Supply Chain Considering Traffic Congestion. 11. Digital supply chain management in manufacturing industries. 12. A Green Fractional Transportation System Under Dual Hesitant Fermatean Fuzzy Configuration with Safety Factor. 13. Application of Hybrid SVM-LR Algorithm for Sentiment Analysis