• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Optimization and Its Applications in Control and Data Sciences: In Honor of Boris T. Polyak?s 80th Birthday

    Optimization and Its Applications in Control and Data Sciences by Goldengorin, Boris;

    In Honor of Boris T. Polyak?s 80th Birthday

    Sorozatcím: Springer Optimization and Its Applications; 115;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 106.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        45 385 Ft (43 223 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 3 631 Ft off)
      • Discounted price 41 753 Ft (39 765 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma Softcover reprint of the original 1st ed. 2016
    • Kiadó Springer
    • Megjelenés dátuma 2018. június 16.
    • Kötetek száma 1 pieces, Previously published in hardcover

    • ISBN 9783319824901
    • Kötéstípus Puhakötés
    • Terjedelem507 oldal
    • Méret 235x155 mm
    • Súly 801 g
    • Nyelv angol
    • Illusztrációk 23 Illustrations, black & white; 22 Illustrations, color
    • 0

    Kategóriák

    Rövid leírás:

    This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference ?Optimization and Its Applications in Control and Data Science? dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015.


    This book reflects developments in theory and applications rooted by Professor Polyak?s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.

    Több

    Hosszú leírás:

    This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference ?Optimization and Its Applications in Control and Data Science? dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015.


    This book reflects developments in theory and applications rooted by Professor Polyak?s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.



    ?This book, organized and nicely edited by Professor Goldengorin, reflects some recent advances in the areas of optimization, control, and data sciences in the directions largely initiated and developed by Boris Polyak over the years. ? I would like to congratulate the editor and all the authors of the papers presented in the book on their excellent work to celebrate great achievements and scientific life of Boris Teodorovich Polyak.? (Boris S. Mordukhovich, Optimization Letters, Vol. 11, 2017)

    Több

    Tartalomjegyzék:

    Introduction: Big, Small, and Optimal Steps of Boris Polyak (Boris Goldengorin).- A Convex Optimization Approach to Modeling of Stationary Periodic Time Series (Anders Lindquist and Giorgio Picci).- New two-phase proximal method of solving the solving the problem of equilibrium programming (Sergey I. Lyashko and Vladimir V. Semenov).- Minimax Control of  Positive Switching Systems with Markovian Jumps (Patrizio Colaneri,  José Geromel, Paolo Bolzern, Grace Deaecto).- A modified Polak-Ribi?re-Polyak conjugate gradient algorithm with sufficient descent and conjugacy properties for unconstrained optimization (Neculai Andrei).- Subgradient method with the transformation of space and Polyak's step (Petro Stetsyuk).- Invariance Conditions for Nonlinear Dynamical Systems (Y. Song, and T. Terlaky).- Nonparametric ellipsoidal approximation of compact sets of random points (S. I., Lyashko, V.V. Semenov D.A. Klyushin, M.V. Prysyazhna, M.P. Shlykov).- Algorithmic Principle of the Least Excessive Revenue for finding market equilibria (Yurii Nesterov, Vladimir Shikhman).- Matrix-Free Convex Optimization Modeling (Stephen Boyd and Steven Diamond).- Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces the Stochastic Quasi-Gradient Methods (Vladimir I. Norkin).    

    Több
    Mostanában megtekintett
    previous
    Design of a Controller for Load Frequency Control

    Design of a Controller for Load Frequency Control

    Gupta, Neelesh Kumar; Singh, Arun Kumar;

    16 925 Ft

    Essentials of Executive Functions Assessment

    Essentials of Executive Functions Assessment

    McCloskey, G;

    24 267 Ft

    next