Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation - Toriumi, Mitsuhiro; - Prospero Internetes Könyváruház

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation: Applications to Earthquake Prediction
 
A termék adatai:

ISBN13:9789819793754
ISBN10:98197937511
Kötéstípus:Keménykötés
Terjedelem:290 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 19 Illustrations, black & white; 218 Illustrations, color
700
Témakör:

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation

Applications to Earthquake Prediction
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 160.49
Becsült forint ár:
68 416 Ft (65 158 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

54 733 (52 126 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 13 683 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book provides a new data augmentation method based on the local stochastic distribution patterns in natural time series data of global and regional seismicity rates and their correlated seismicity rates. The augmentation procedure is called the diffusion ? denoising augmentation method from the local Gaussian distribution of segmented data of long time series. This method makes it possible to apply the deep machine learning necessary to neural network prediction of rare large earthquakes in the global and regional earth system.



The book presents the physical background of the processes showing the development of characteristic features in the global and regional correlated seismicity dynamics, which are manifested by the successive time series of 1990?2023. Physical processes of the correlated global seismicity change and the earth?s rotation, fluctuation of plate motion, and the earth?s ellipsoid ratio (C20 of satellite gravity change) are proposed in this book. The equivalency between Gaussian seismicity network dynamics and the minimal nonlinear dynamics model of correlated seismicity rates is also provided. In addition, the book contains simulated models of the shear crack jog wave, precipitation of minerals in the jog, and jog accumulation inducing shear crack propagation which leads to earthquakes in the plate boundary rocks under permeable fluid flow.

Hosszú leírás:

This book provides a new data augmentation method based on the local stochastic distribution patterns in natural time series data of global and regional seismicity rates and their correlated seismicity rates. The augmentation procedure is called the diffusion ? denoising augmentation method from the local Gaussian distribution of segmented data of long time series. This method makes it possible to apply the deep machine learning necessary to neural network prediction of rare large earthquakes in the global and regional earth system.

The book presents the physical background of the processes showing the development of characteristic features in the global and regional correlated seismicity dynamics, which are manifested by the successive time series of 1990?2023. Physical processes of the correlated global seismicity change and the earth?s rotation, fluctuation of plate motion, and the earth?s ellipsoid ratio (C20 of satellite gravity change) are proposed in this book. The equivalency between Gaussian seismicity network dynamics and the minimal nonlinear dynamics model of correlated seismicity rates is also provided. In addition, the book contains simulated models of the shear crack jog wave, precipitation of minerals in the jog, and jog accumulation inducing shear crack propagation which leads to earthquakes in the plate boundary rocks under permeable fluid flow.

Tartalomjegyzék:

Introduction.- Physics of Geochemical Mechanics.- Characteristic Microstructures Reated to Multiphase Shear Flow.- Recent Variations of Global and Regional Correlated Seismicity.- Neural Network Modeling of Regression in Nonlinear Dynamics Timeseries.- Augmentation of Timeseries and DNN Modeling of Seismic Activity.- Concluding Remarks.