A termék adatai:
ISBN13: | 9783031541032 |
ISBN10: | 30315410311 |
Kötéstípus: | Keménykötés |
Terjedelem: | 550 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white; 26 Illustrations, color |
739 |
Témakör:
Poisson Hyperplane Tessellations
Sorozatcím:
Springer Monographs in Mathematics;
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma: 2024. május 24.
Kötetek száma: 1 pieces, Book
Normál ár:
Kiadói listaár:
EUR 90.94
EUR 90.94
Az Ön ára:
36 369 (34 637 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 3 162 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.
Hosszú leírás:
This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.
?The present monograph is nicely written and can be a good introduction to this subject also for beginners (as the reviewer of this monograph is), especially that the topics are presented in detail with many instructive figures. This increases readability (even if some of the considerations are more technical). To sum up, I believe that this is a very nicely written monograph that unites in one piece different areas of contemporary mathematics.? (Piotr Pokora, zbMATH 1545.52001, 2024)
Tartalomjegyzék:
- 1 Notation.- 2 Hyperplane and particle processes.- 3 Distribution-independent density relations.- 4 Poisson hyperplane processes.- 5 Auxiliary functionals and bodies.- 6 Zero cell and typical cell.- 7 Mixing and ergodicity.- 8 Observations inside a window.- 9 Central limit theorems.- 10 Palm distributions and related constructions.- 11 Typical faces and weighted faces.- 12 Large cells and faces.- 13 Cells with a given number of facets.- 14 Small cells.- 15 The K-cell under increasing intensities.- 16 Isotropic zero cells.- 17 Functionals of Poisson processes and applications.- 18 Appendix: Some auxiliary results.