Poisson Hyperplane Tessellations - Hug, Daniel; Schneider, Rolf; - Prospero Internetes Könyváruház

Poisson Hyperplane Tessellations
 
A termék adatai:

ISBN13:9783031541032
ISBN10:30315410311
Kötéstípus:Keménykötés
Terjedelem:550 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white; 26 Illustrations, color
739
Témakör:

Poisson Hyperplane Tessellations

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 90.94
Becsült forint ár:
39 531 Ft (37 649 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

36 369 (34 637 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 3 162 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.

Hosszú leírás:
This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.

?The present monograph is nicely written and can be a good introduction to this subject also for beginners (as the reviewer of this monograph is), especially that the topics are presented in detail with many instructive figures. This increases readability (even if some of the considerations are more technical). To sum up, I believe that this is a very nicely written monograph that unites in one piece different areas of contemporary mathematics.? (Piotr Pokora, zbMATH 1545.52001, 2024)

Tartalomjegyzék:
- 1 Notation.- 2 Hyperplane and particle processes.- 3 Distribution-independent density relations.- 4 Poisson hyperplane processes.- 5 Auxiliary functionals and bodies.- 6 Zero cell and typical cell.- 7 Mixing and ergodicity.- 8 Observations inside a window.- 9 Central limit theorems.- 10 Palm distributions and related constructions.- 11 Typical faces and weighted faces.- 12 Large cells and faces.- 13 Cells with a given number of facets.- 14 Small cells.- 15 The K-cell under increasing intensities.- 16 Isotropic zero cells.- 17 Functionals of Poisson processes and applications.- 18 Appendix: Some auxiliary results.