Pop-Up Geometry - O'Rourke, Joseph; - Prospero Internetes Könyváruház

Pop-Up Geometry

The Mathematics Behind Pop-Up Cards
 
Kiadó: Cambridge University Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 57.99
Becsült forint ár:
30 444 Ft (28 995 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

27 400 (26 096 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 3 044 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Explores the beautifully intricate dynamics of pop-up cards using high school mathematics, making tangible what is often dry and abstract.

Hosszú leírás:
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.

'What a delight! Finally, a book that explains the geometry behind pop-up cards in a simple and straight-forward way with loads of illustrations and web animations to help. I look forward to sharing this gem with my own students.' Thomas Hull, Western New England University
Tartalomjegyzék:
Preface; 1. Parallel Folds; 2. V-Folds and Rotary Motion; 3. The Knight's Visor; 4. Pop-up Spinner; 5. Polyhedra: Rigid Origami and Flattening; 6. Algorithms for Pop-Up Design; 7. Pop-Up Design is Hard; 8. Solutions to Exercises.