Practical Machine Learning - Nyamawe, Ally S.; Mjahidi, Mohamedi M.; Nnko, Noe E.; - Prospero Internetes Könyváruház

Practical Machine Learning: A Beginner's Guide with Ethical Insights
 
A termék adatai:

ISBN13:9781032770291
ISBN10:1032770295
Kötéstípus:Puhakötés
Terjedelem:192 oldal
Méret:234x156 mm
Nyelv:angol
Illusztrációk: 55 Illustrations, black & white; 20 Illustrations, color; 4 Halftones, black & white; 5 Halftones, color; 51 Line drawings, black & white; 15 Line drawings, color; 43 Tables, black & white
700
Témakör:

Practical Machine Learning

A Beginner's Guide with Ethical Insights
 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 44.99
Becsült forint ár:
23 005 Ft (21 910 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

18 404 (17 528 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 4 601 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This is a core resource for students and instructors of machine learning and data science looking for beginner-friendly material which offers real-world applications and takes ethical discussions into account.

Hosszú leírás:

The book provides an accessible, comprehensive introduction for beginners to machine learning, equipping them with the fundamental skills and techniques essential for this field.


It enables beginners to construct practical, real-world solutions powered by machine learning across diverse application domains. It demonstrates the fundamental techniques involved in data collection, integration, cleansing, transformation, development, and deployment of machine learning models. This book emphasizes the importance of integrating responsible and explainable AI into machine learning models, ensuring these principles are prioritized rather than treated as an afterthought. To support learning, this book also offers information on accessing additional machine learning resources such as datasets, libraries, pre-trained models, and tools for tracking machine learning models.


This is a core resource for students and instructors of machine learning and data science looking for beginner-friendly material which offers real-world applications and takes ethical discussions into account.

Tartalomjegyzék:

1. Fundamentals of Machine Learning  2. Mathematics for Machine Learning 3. Data Preparation  4. Machine Learning Operations 5. Machine Learning Software and Hardware Requirements 6. Responsible AI and Explainable AI 7. Artificial General Intelligence 8. Machine Learning Step-by-Step Practical Examples