Prandtl Equations and Related Boundary Layer Equations - Qin, Yuming; Dong, Xiaolei; Wang, Xiuqing; - Prospero Internetes Könyváruház

Prandtl Equations and Related Boundary Layer Equations

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 149.79
Becsült forint ár:
65 113 Ft (62 013 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

52 091 (49 610 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 13 023 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book aims to present some recent results on Prandtl equations and MHD boundary layer equations.



This book is essentially divided into two parts. Chapter 1 as the first part systematically surveys the results till 2020 on Prandtl equations and MHD boundary layer equations. Chapter 2 to 6 are the main part of the book, which presents the local and the global well-posedness of solutions to the Prandtl equations and MHD boundary layer equations. In detail, Chapter 2 is concerned with global well-posedness of solutions to the 2D Prandtl-Hartmann equations in an analytic framework. Chapter 3 investigates the local existence of solutions to the 2D Prandtl equations in a weighted Sobolev space. Chapter 4 studies the local well-posedness of solutions to the 2D mixed Prandtl equations in a Sobolev space without monotonicity and lower bound. Chapter 5 is concerned with global existence of solutions to the 2D magnetic Prandtl equations in the Prandtl-Hartmann regime. Chapter 6 proves the local existence of solutions to the 3D Prandtl equations with a special structure.



Mathematicians and physicists who are interested in fluid dynamics will find this book helpful.

Hosszú leírás:

This book aims to present some recent results on Prandtl equations and MHD boundary layer equations.



This book is essentially divided into two parts. Chapter 1 as the first part systematically surveys the results till 2020 on Prandtl equations and MHD boundary layer equations. Chapter 2 to 6 are the main part of the book, which presents the local and the global well-posedness of solutions to the Prandtl equations and MHD boundary layer equations. In detail, Chapter 2 is concerned with global well-posedness of solutions to the 2D Prandtl-Hartmann equations in an analytic framework. Chapter 3 investigates the local existence of solutions to the 2D Prandtl equations in a weighted Sobolev space. Chapter 4 studies the local well-posedness of solutions to the 2D mixed Prandtl equations in a Sobolev space without monotonicity and lower bound. Chapter 5 is concerned with global existence of solutions to the 2D magnetic Prandtl equations in the Prandtl-Hartmann regime. Chapter 6 proves the local existence of solutions to the 3D Prandtl equations with a special structure.



Mathematicians and physicists who are interested in fluid dynamics will find this book helpful.

Tartalomjegyzék:

Preface.- Chapter 1. Survey on the Prandtls Equations and Related Boundary Layer Equations.- Chapter 2. Global Well-posedness of Solutions to the 2D Prandtl-Hartmann Equations in Analytic Framework.- Chapter 3. Local Existence of Solutions to the 2D Prandtl Equations in A Weighted Sobolev Space.- Chapter 4. Local Well-posedness of Solutions to the 2D Mixed Prandtl Equations in A Sobolev Space Without Monotonicity or Lower Bound.- Chapter 5. Local Well-posedness of Solutions to 2D Magnetic Prandtl Model in the Prandtl-Hartmann regime.- Chapter 6. Local Existence of Solutions to 3D Prandtl Equations with a Special Structure.- Bibliography.