
A termék adatai:
ISBN13: | 9781461411468 |
ISBN10: | 1461411467 |
Kötéstípus: | Keménykötés |
Terjedelem: | 240 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | V, 240 p. |
700 |
Témakör:
Predictive Clustering
Kiadás sorszáma: 1st ed. 2025
Kiadó: Springer
Megjelenés dátuma: 2025. április 25.
Kötetek száma: 1 pieces, Book
Normál ár:
Kiadói listaár:
EUR 80.20
EUR 80.20
Az Ön ára:
32 073 (30 546 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 2 789 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Rövid leírás:
This book presents a novel paradigm for machine learning and data mining called predictive clustering which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques. Includes applications in ecology and bio-informatics.
Hosszú leírás:
This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques.
The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.
The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.
The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics.
The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.
Tartalomjegyzék:
Introduction.- What is predictive clustering?.- Motivation: A variety of predictive learning tasks.- Some basic approaches to prediction and clustering.- Formalizing predictive clustering.- Predictive clustering trees.- Predictive clustering rules.- Distances and prototype functions.- Predictive Clustering with Constraints.- Relational PCTs.- Applications in environmental sciences.- Applications in bioinformatics.- Clus