Privacy-preserving Computing - Chen, Kai; Yang, Qiang; - Prospero Internetes Könyváruház

Privacy-preserving Computing: for Big Data Analytics and AI
 
A termék adatai:

ISBN13:9781009299510
ISBN10:1009299514
Kötéstípus:Keménykötés
Terjedelem:271 oldal
Méret:234x155x21 mm
Súly:530 g
Nyelv:angol
704
Témakör:

Privacy-preserving Computing

for Big Data Analytics and AI
 
Kiadó: Cambridge University Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 49.99
Becsült forint ár:
25 562 Ft (24 345 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

20 450 (19 476 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 5 112 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Systematically introduces privacy-preserving computing techniques and practical applications for students, researchers, and practitioners.

Hosszú leírás:
Privacy-preserving computing aims to protect the personal information of users while capitalizing on the possibilities unlocked by big data. This practical introduction for students, researchers, and industry practitioners is the first cohesive and systematic presentation of the field's advances over four decades. The book shows how to use privacy-preserving computing in real-world problems in data analytics and AI, and includes applications in statistics, database queries, and machine learning. The book begins by introducing cryptographic techniques such as secret sharing, homomorphic encryption, and oblivious transfer, and then broadens its focus to more widely applicable techniques such as differential privacy, trusted execution environment, and federated learning. The book ends with privacy-preserving computing in practice in areas like finance, online advertising, and healthcare, and finally offers a vision for the future of the field.

'While we are witnessing revolutionary changes in AI technology empowered by deep learning and large-scale computing, data privacy for trusted machine learning plays an essential role in safe and reliable AI deployment. This book introduces fundamental concepts and advanced techniques for privacy-preserving computation for data mining and machine learning, which serve as a foundation for safe and secure AI development and deployment.' Pin-Yu Chen, IBM Research
Tartalomjegyzék:
1. Introduction to privacy-preserving computing; 2. Secret sharing; 3. Homomorphic encryption; 4. Oblivious transfer; 5. Garbled circuit; 6. Differential privacy; 7. Trusted execution environment; 8. Federated learning; 9. Privacy-preserving computing platforms; 10. Case studies of privacy-preserving computing; 11. Future of privacy-preserving computing; References; Index.