• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Privacy-Preserving Data Mining: Models and Algorithms

    Privacy-Preserving Data Mining by Aggarwal, Charu C.; Yu, Philip S.;

    Models and Algorithms

    Sorozatcím: Advances in Database Systems; 34;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 235.39
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        99 852 Ft (95 097 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 7 988 Ft off)
      • Discounted price 91 864 Ft (87 489 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2008
    • Kiadó Springer
    • Megjelenés dátuma 2008. július 7.
    • Kötetek száma 1 pieces, Book

    • ISBN 9780387709918
    • Kötéstípus Keménykötés
    • Terjedelem514 oldal
    • Méret 235x155 mm
    • Súly 2040 g
    • Nyelv angol
    • Illusztrációk XXII, 514 p. Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes.


    Privacy Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.  This edited volume also contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy.


    Privacy Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science. This book is also suitable for practitioners in industry.


     

    Több

    Hosszú leírás:

    Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes.


    Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques.


    This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions.


    Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.


     



    From the reviews:



    "This book provides an exceptional summary of the state-of-the-art accomplishments in the area of privacy-preserving data mining, discussing the most important algorithms, models, and applications in each direction. The target audience includes researchers, graduate students, and practitioners who are interested in this area. ? I recommend this book to all readers interested in privacy-preserving data mining." (Aris Gkoulalas-Divanis, ACM Computing Reviews, October, 2008)

    Több

    Tartalomjegyzék:

    An Introduction to Privacy-Preserving Data Mining.- A General Survey of Privacy-Preserving Data Mining Models and Algorithms.- A Survey of Inference Control Methods for Privacy-Preserving Data Mining.- Measures of Anonymity.- k-Anonymous Data Mining: A Survey.- A Survey of Randomization Methods for Privacy-Preserving Data Mining.- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining.- A Survey of Quantification of Privacy Preserving Data Mining Algorithms.- A Survey of Utility-based Privacy-Preserving Data Transformation Methods.- Mining Association Rules under Privacy Constraints.- A Survey of Association Rule Hiding Methods for Privacy.- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries.- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data.- A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data.- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods.- Private Data Analysis via Output Perturbation.- A Survey of Query Auditing Techniques for Data Privacy.- Privacy and the Dimensionality Curse.- Personalized Privacy Preservation.- Privacy-Preserving Data Stream Classification.

    Több