Program Logics for Certified Compilers - Appel, Andrew W.; - Prospero Internetes Könyváruház

Program Logics for Certified Compilers

 
Kiadó: Cambridge University Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 79.99
Becsült forint ár:
40 902 Ft (38 955 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

32 722 (31 164 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 8 180 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This tutorial for graduate students covers practical and theoretical aspects of separation logic with constructions and proofs in Coq.

Hosszú leírás:
Separation logic is the twenty-first-century variant of Hoare logic that permits verification of pointer-manipulating programs. This book covers practical and theoretical aspects of separation logic at a level accessible to beginning graduate students interested in software verification. On the practical side it offers an introduction to verification in Hoare and separation logics, simple case studies for toy languages, and the Verifiable C program logic for the C programming language. On the theoretical side it presents separation algebras as models of separation logics; step-indexed models of higher-order logical features for higher-order programs; indirection theory for constructing step-indexed separation algebras; tree-shares as models for shared ownership; and the semantic construction (and soundness proof) of Verifiable C. In addition, the book covers several aspects of the CompCert verified C compiler, and its connection to foundationally verified software analysis tools. All constructions and proofs are made rigorous and accessible in the Coq developments of the open-source Verified Software Toolchain.
Tartalomjegyzék:
1. Introduction; Part I. Generic Separation Logic: 2. Hoare logic; 3. Separation logic; 4. Soundness of Hoare logic; 5. Mechanized semantic library Andrew W. Appel, Robert Dockins and Aquinas Hobor; 6. Separation algebras; 7. Operators on separation algebras; 8. First-order separation logic; 9. A little case study; 10. Covariant recursive predicates; 11. Share accounting; Part II. Higher-Order Separation Logic: 12. Separation logic as a logic; 13. From separation algebras to separation logic; 14. Simplification by rewriting; 15. Introduction to step-indexing; 16. Predicate implication and subtyping; 17. General recursive predicates; 18. Case study: separation logic with first-class functions; 19. Data structures in indirection theory; 20. Applying higher-order separation logic; 21. Lifted separation logics; Part III. Separation Logic for CompCert: 22. Verifiable C; 23. Expressions, values, and assertions; 24. The VST separation logic for C light; 25. Typechecking for Verifiable C Josiah Dodds; 26. Derived rules and proof automation for C light; 27. Proof of a program; 28. More C programs; 29. Dependently typed C programs; 30. Concurrent separation logic; Part IV. Operational Semantics of CompCert: 31. CompCert; 32. The CompCert memory model Xavier Leroy, Andrew W. Appel, Sandrine Blazy and Gordon Stewart; 33. How to specify a compiler Lennart Beringer, Robert Dockins and Gordon Stewart; 34. C light operational semantics; Part V. Higher-Order Semantic Models: 35. Indirection theory Aquinas Hobor, Andrew Appel and Robert Dockins; 36. Case study: lambda-calculus with references; 37. Higher-order Hoare logic; 38. Higher-order separation logic; 39. Semantic models of predicates-in-the-heap; Part VI. Semantic Model and Soundness of Verifiable C: 40. Separation algebra for CompCert; 41. Share models; 42. Juicy memories Gordon Stewart and Andrew W. Appel; 43. Modeling the Hoare judgment; 44. Semantic model of CSL; 45. Modular structure of the development; Part VII. Applications: 46. Foundational static analysis; 47. Heap theorem prover Gordon Stewart, Lennart Beringer and Andrew W. Appel.