A termék adatai:
ISBN13: | 9781316511756 |
ISBN10: | 1316511758 |
Kötéstípus: | Keménykötés |
Terjedelem: | 180 oldal |
Nyelv: | angol |
700 |
Témakör:
Quantum Hall Effect
The First Topological Insulator
Kiadó: Cambridge University Press
Megjelenés dátuma: 2024. november 30.
Normál ár:
Kiadói listaár:
GBP 125.00
GBP 125.00
Az Ön ára:
51 135 (48 700 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 12 784 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Rövid leírás:
This book offers an extensive discussion on quantum Hall effect for students of physics and engineering, studying condensed matter physics.
Hosszú leírás:
This book deals with the discovery and explanation of the quantum Hall effect and its fundamental principles. It is meant for undergraduate and graduate students of physics, engineering, and applied sciences studying condensed matter physics. Doctoral students and researchers of this subject will also find it equally useful. It begins with a historical overview of this effect wherein the experiment and the physical systems are described. It progresses to cover discrete symmetries like inversion symmetry, time reversal symmetry, particle-hole symmetry, and chiral symmetry. It also examines how the Hamiltonian transforms under such symmetry operations. Two 1D models, namely the Su-Schrieffer-Heeger (SSH) model and a Kitaev chain with superconducting correlations, are discussed too. Then, the quantum Hall effect in graphene is explained. Further, the spin Hall effect is studied which may have prospects of using graphene as spintronic devices. The book ends with a brief review on fractional quantum Hall effect.
Tartalomjegyzék:
Foreword; Preface; Acknowledgement; 1. Quantum Hall Effect; 2. Symmetry and Topology; 3. Topology in One Dimensional (1D) and Quasi-1D Models; 4. Quantum Hall Effect in Graphene; 5. Graphene as a Topological Insulator - Anomalous Hall Effect; 6. Fractional Quantum Hall Effect; 7. Epilogue; Bibliography; Index.