
A termék adatai:
ISBN13: | 9783031132377 |
ISBN10: | 3031132378 |
Kötéstípus: | Puhakötés |
Terjedelem: | 247 oldal |
Méret: | 235x155 mm |
Súly: | 409 g |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white |
499 |
Témakör:
Regularity of the One-phase Free Boundaries
Sorozatcím:
Lecture Notes of the Unione Matematica Italiana;
28;
Kiadás sorszáma: 1st ed. 2023
Kiadó: Springer
Megjelenés dátuma: 2023. február 25.
Kötetek száma: 1 pieces, Book
Normál ár:
Kiadói listaár:
EUR 42.79
EUR 42.79
Az Ön ára:
16 699 (15 904 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 1 452 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
A Prosperónál jelenleg nincsen raktáron.
Rövid leírás:
This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research.
The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories.
This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs.
Hosszú leírás:
This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research.
The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories.
This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs.
Tartalomjegyzék:
- 1. Introduction and Main Results. - 2. Existence of Solutions, Qualitative Properties and Examples. - 3. Lipschitz Continuity of the Minimizers. - 4. Non-degeneracy of the Local Minimizers. - 5. Measure and Dimension of the Free Boundary. - 6. Blow-Up Sequences and Blow-Up Limits. - 7. Improvement of Flatness. - 8. Regularity of the Flat Free Boundaries. - 9. The Weiss Monotonicity Formula and Its Consequences. - 10. Dimension of the Singular Set. - 11. Regularity of the Free Boundary for Measure Constrained Minimizers. - 12. An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries.