Scaling Up with R and Apache Arrow - Crane, Nic; Keane, Jonathan; Richardson, Neal; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9781032660288
ISBN10:1032660287
Kötéstípus:Puhakötés
Terjedelem:168 oldal
Méret:234x156 mm
Súly:453 g
Nyelv:angol
Illusztrációk: 20 Illustrations, black & white; 20 Line drawings, black & white; 12 Tables, black & white
700
Témakör:

Scaling Up with R and Apache Arrow

Bigger Data, Easier Workflows
 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 44.99
Becsült forint ár:
22 769 Ft (21 685 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

20 492 (19 517 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 2 277 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book provides a guide to working efficiently with larger-than-memory datasets using the arrow R package. You'll learn how to overcome these hurdles without needing to set up complex infrastructure. Written by developers of the Arrow R package, this guide is essential for anyone looking to scale their data processing capabilities in R.

Hosszú leírás:

Analyze large datasets directly from R. Scaling Up With R and Arrow provides a guide to working efficiently with larger-than-memory datasets using the arrow R package. As data grows in size and complexity, traditional data analysis methods in R often hit technical limitations. In this book, you'll learn how to overcome these hurdles without needing to set up complex infrastructure.


You'll learn about the Apache Arrow project's origins, goals, and its significance in bridging the gap between data science and big data ecosystems.  You'll also learn how to leverage the arrow R package to work directly with files in various formats, such as CSV and Parquet, using familiar dplyr syntax. This book explores practical topics like data manipulation, file formats, working with larger datasets, and optimizing workflows for data in cloud storage. Advanced chapters examine user-defined functions, integration with other tools like DuckDB, and extending Arrow's capabilities to work with geospatial data.


Written by developers of the Arrow R package, this guide is essential for anyone looking to scale their data processing capabilities in R.

Tartalomjegyzék:

Acknowledgements  Foreword  1. Introduction  2. Getting Started  3. Data Manipulation  4. Files and Formats  5. Datasets  6. Cloud  7. Advanced Topics  8. Sharing Data and Interoperability  References  Appendices