• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Second-Order Variational Analysis in Optimization, Variational Stability, and Control: Theory,  Algorithms, Applications

    Second-Order Variational Analysis in Optimization, Variational Stability, and Control by Mordukhovich, Boris S.;

    Theory, Algorithms, Applications

    Sorozatcím: Springer Series in Operations Research and Financial Engineering;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 171.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        72 618 Ft (69 160 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 5 809 Ft off)
      • Discounted price 66 809 Ft (63 627 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer
    • Megjelenés dátuma 2024. május 22.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031534751
    • Kötéstípus Keménykötés
    • Terjedelem789 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 3 Illustrations, black & white; 21 Illustrations, color
    • 614

    Kategóriák

    Rövid leírás:

    This fundamental work is a sequel to monographs by the same author: Variational Analysis and Applications (2018) and the two Grundlehren volumes Variational Analysis and Generalized Differentiation: I Basic Theory, II Applications (2006). This present book is the first entirely devoted to second-order variational analysis with numerical algorithms and applications to practical models. It covers a wide range of topics including theoretical, numerical, and implementations that will interest researchers in analysis, applied mathematics, mathematical economics, engineering, and optimization. Inclusion of a variety of exercises and commentaries in each chapter allows the book to be used effectively in a course on this subject. This area has been well recognized as an important and rapidly developing area of nonlinear analysis and optimization with numerous applications. Consisting of 9 interrelated chapters, the book is self-contained with the inclusion of some preliminaries in Chapter 1.


    Results presented are useful tools for characterizations of fundamental notions of variational stability of solutions for diverse classes of problems in optimization and optimal control, the study of variational convexity of extended-real-valued functions and their specifications and variational sufficiency in optimization.  Explicit calculations and important applications of second-order subdifferentials associated with the achieved characterizations of variational stability and related concepts, to the design and justification of second-order numerical algorithms for solving various classes of optimization problems, nonsmooth equations, and subgradient systems, are included. Generalized Newtonian algorithms are presented that show local and global convergence with linear, superlinear, and quadratic convergence rates. Algorithms are implemented to address interesting practical problems from the fields of machine learning, statistics, imaging, and other areas.

    Több

    Hosszú leírás:

    This fundamental work is a sequel to monographs by the same author: Variational Analysis and Applications (2018) and the two Grundlehren volumes Variational Analysis and Generalized Differentiation: I Basic Theory, II Applications (2006). This present book is the first entirely devoted to second-order variational analysis with numerical algorithms and applications to practical models. It covers a wide range of topics including theoretical, numerical, and implementations that will interest researchers in analysis, applied mathematics, mathematical economics, engineering, and optimization. Inclusion of a variety of exercises and commentaries in each chapter allows the book to be used effectively in a course on this subject. This area has been well recognized as an important and rapidly developing area of nonlinear analysis and optimization with numerous applications. Consisting of 9 interrelated chapters, the book is self-contained with the inclusion of some preliminaries in Chapter 1.

    Results presented are useful tools for characterizations of fundamental notions of variational stability of solutions for diverse classes of problems in optimization and optimal control, the study of variational convexity of extended-real-valued functions and their specifications and variational sufficiency in optimization.  Explicit calculations and important applications of second-order subdifferentials associated with the achieved characterizations of variational stability and related concepts, to the design and justification of second-order numerical algorithms for solving various classes of optimization problems, nonsmooth equations, and subgradient systems, are included. Generalized Newtonian algorithms are presented that show local and global convergence with linear, superlinear, and quadratic convergence rates. Algorithms are implemented to address interesting practical problems from the fields of machine learning, statistics, imaging, and other areas.

    Több

    Tartalomjegyzék:

    Preface.- 1. Basic Concepts of Second-Order Analysis.- 2. Second-Order Subdifferential Calculus.- 3. Computing Second-Order Subdifferentials.- 4. Computing Primal-Dual Second-Order Objects.- 5. Tilt Stability in Optimization.- 6. Full Stability in Optimization.- 7. Full Stability for Parametric Variational Systems.- 8. Critical Multipliers in Variational Systems.- 9. Newton-Type Methods for Tilt-Stable Minimizers.- 10. Sweeping Process Over Controlled Polyhedra.- 11. Sweeping Process with Controlled Perturbations.- 12. Sweeping Process Under Prox-Regularity.- 13. Applications to Controlled Crowd Motion Models.- References.- List of Statements.- List of Figures.- Glossary of Notation.- Subject Index.

    Több