• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Statistical Foundations of Actuarial Learning and its Applications

    Statistical Foundations of Actuarial Learning and its Applications by Wüthrich, Mario V.; Merz, Michael;

    Sorozatcím: Springer Actuarial;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 690 Ft (21 609 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 815 Ft off)
      • Discounted price 20 874 Ft (19 880 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2023
    • Kiadó Springer
    • Megjelenés dátuma 2022. november 23.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031124082
    • Kötéstípus Keménykötés
    • Terjedelem605 oldal
    • Méret 235x155 mm
    • Súly 1087 g
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white
    • 473

    Kategóriák

    Rövid leírás:

    This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.


    Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  

    Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how tointerpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.

    Több

    Hosszú leírás:

    This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.

    Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  



    Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.



    Több

    Tartalomjegyzék:

    - 1. Introduction. - 2. Exponential Dispersion Family. - 3. Estimation Theory. - 4. Predictive Modeling and Forecast Evaluation. - 5. Generalized Linear Models. - 6. Bayesian Methods, Regularization and Expectation-Maximization. - 7. Deep Learning. - 8. Recurrent Neural Networks. - 9. Convolutional Neural Networks. - 10. Natural Language Processing. - 11. Selected Topics in Deep Learning. - 12. Appendix A: Technical Results on Networks. - 13. Appendix B: Data and Examples.

    Több
    Mostanában megtekintett
    previous
    Statistical Foundations of Actuarial Learning and its Applications

    Statistical Foundations of Actuarial Learning and its Applications

    Wüthrich, Mario V.; Merz, Michael;

    22 690 Ft

    Ideal Theory of Commutative Rings and Monoids

    Ideal Theory of Commutative Rings and Monoids

    Halter-Koch, Franz; , Geroldinger, Alfred; Reinhart, Andreas; (ed.)

    34 037 Ft

    Latin Unseens for A Level

    Latin Unseens for A Level

    Carter, Ashley;

    10 116 Ft

    Practical Aspects of Rape Investigation: A Multidisciplinary Approach, Third Edition

    Practical Aspects of Rape Investigation: A Multidisciplinary Approach, Third Edition

    Hazelwood, Robert R.; Burgess, Ann Wolbert; (ed.)

    65 793 Ft

    Stokes Vector Based SHG Microscopy

    Stokes Vector Based SHG Microscopy

    Mazumder, Nirmal;

    16 925 Ft

    Understanding and Using Challenging  Educational Theories

    Understanding and Using Challenging Educational Theories

    Aubrey, Karl; Riley, Alison;

    37 957 Ft

    next